-
Notifications
You must be signed in to change notification settings - Fork 0
/
plot.py
128 lines (96 loc) · 5.61 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#!/usr/bin/env python
'''
Contain functions to draw Bird Eye View for region of interest(ROI) and draw bounding boxes according to risk factor
for humans in a frame and draw lines between boxes according to risk factor between two humans.
'''
# imports
import cv2
import numpy as np
# Function to draw Bird Eye View for region of interest(ROI). Red, Yellow, Green points represents risk to human.
# Red: High Risk
# Yellow: Low Risk
# Green: No Risk
def bird_eye_view(frame, distances_mat, bottom_points, scale_w, scale_h, risk_count):
h = frame.shape[0]
w = frame.shape[1]
red = (0, 0, 255)
green = (0, 255, 0)
yellow = (0, 255, 255)
white = (200, 200, 200)
blank_image = np.zeros((int(h * scale_h), int(w * scale_w), 3), np.uint8)
blank_image[:] = white
warped_pts = []
r = []
g = []
y = []
for i in range(len(distances_mat)):
if distances_mat[i][2] == 0:
if (distances_mat[i][0] not in r) and (distances_mat[i][0] not in g) and (distances_mat[i][0] not in y):
r.append(distances_mat[i][0])
if (distances_mat[i][1] not in r) and (distances_mat[i][1] not in g) and (distances_mat[i][1] not in y):
r.append(distances_mat[i][1])
blank_image = cv2.line(blank_image, (int(distances_mat[i][0][0] * scale_w), int(distances_mat[i][0][1] * scale_h)), (int(distances_mat[i][1][0] * scale_w), int(distances_mat[i][1][1]* scale_h)), red, 2)
for i in range(len(distances_mat)):
if distances_mat[i][2] == 1:
if (distances_mat[i][0] not in r) and (distances_mat[i][0] not in g) and (distances_mat[i][0] not in y):
y.append(distances_mat[i][0])
if (distances_mat[i][1] not in r) and (distances_mat[i][1] not in g) and (distances_mat[i][1] not in y):
y.append(distances_mat[i][1])
blank_image = cv2.line(blank_image, (int(distances_mat[i][0][0] * scale_w), int(distances_mat[i][0][1] * scale_h)), (int(distances_mat[i][1][0] * scale_w), int(distances_mat[i][1][1]* scale_h)), yellow, 2)
for i in range(len(distances_mat)):
if distances_mat[i][2] == 2:
if (distances_mat[i][0] not in r) and (distances_mat[i][0] not in g) and (distances_mat[i][0] not in y):
g.append(distances_mat[i][0])
if (distances_mat[i][1] not in r) and (distances_mat[i][1] not in g) and (distances_mat[i][1] not in y):
g.append(distances_mat[i][1])
for i in bottom_points:
blank_image = cv2.circle(blank_image, (int(i[0] * scale_w), int(i[1] * scale_h)), 5, green, 10)
for i in y:
blank_image = cv2.circle(blank_image, (int(i[0] * scale_w), int(i[1] * scale_h)), 5, yellow, 10)
for i in r:
blank_image = cv2.circle(blank_image, (int(i[0] * scale_w), int(i[1] * scale_h)), 5, red, 10)
#pad = np.full((100,blank_image.shape[1],3), [110, 110, 100], dtype=np.uint8)
#cv2.putText(pad, "-- HIGH RISK : " + str(risk_count[0]) + " people", (50, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1)
#cv2.putText(pad, "-- LOW RISK : " + str(risk_count[1]) + " people", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 255), 1)
#cv2.putText(pad, "-- SAFE : " + str(risk_count[2]) + " people", (50, 80), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1)
#blank_image = np.vstack((blank_image,pad))
return blank_image
# Function to draw bounding boxes according to risk factor for humans in a frame and draw lines between
# boxes according to risk factor between two humans.
# Red: High Risk
# Yellow: Low Risk
# Green: No Risk
def social_distancing_view(frame, distances_mat, boxes, risk_count):
red = (0, 0, 255)
green = (0, 255, 0)
yellow = (0, 255, 255)
for i in range(len(boxes)):
x,y,w,h = boxes[i][:]
frame = cv2.rectangle(frame,(x,y),(x+w,y+h),green,2)
for i in range(len(distances_mat)):
per1 = distances_mat[i][0]
per2 = distances_mat[i][1]
closeness = distances_mat[i][2]
if closeness == 1:
x,y,w,h = per1[:]
frame = cv2.rectangle(frame,(x,y),(x+w,y+h),yellow,2)
x1,y1,w1,h1 = per2[:]
frame = cv2.rectangle(frame,(x1,y1),(x1+w1,y1+h1),yellow,2)
frame = cv2.line(frame, (int(x+w/2), int(y+h/2)), (int(x1+w1/2), int(y1+h1/2)),yellow, 2)
for i in range(len(distances_mat)):
per1 = distances_mat[i][0]
per2 = distances_mat[i][1]
closeness = distances_mat[i][2]
if closeness == 0:
x,y,w,h = per1[:]
frame = cv2.rectangle(frame,(x,y),(x+w,y+h),red,2)
x1,y1,w1,h1 = per2[:]
frame = cv2.rectangle(frame,(x1,y1),(x1+w1,y1+h1),red,2)
frame = cv2.line(frame, (int(x+w/2), int(y+h/2)), (int(x1+w1/2), int(y1+h1/2)),red, 2)
pad = np.full((140,frame.shape[1],3), [110, 110, 100], dtype=np.uint8)
cv2.putText(pad, "Bounding box shows the level of risk to the person.", (50, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (100, 100, 0), 2)
cv2.putText(pad, "-- HIGH RISK : " + str(risk_count[0]) + " people", (50, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 1)
cv2.putText(pad, "-- LOW RISK : " + str(risk_count[1]) + " people", (50, 80), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 255), 1)
cv2.putText(pad, "-- SAFE : " + str(risk_count[2]) + " people", (50, 100), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 1)
frame = np.vstack((frame,pad))
return frame