forked from embodied-generalist/embodied-generalist
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
196 lines (168 loc) · 8.12 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import json
import os
from datetime import datetime
from math import ceil
import hydra
import numpy as np
import torch
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from accelerate import Accelerator
from tqdm import trange
import common.io_utils as iu
from common.misc import rgetattr
from data.datasets import LeoBase
from data.data_utils import pad_tensors
from model.leo_agent import LeoAgent
from trainer.leo_trainer import LeoTrainer
logger = get_logger(__name__)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
class LeoProber(LeoTrainer, LeoBase):
def __init__(self, cfg):
set_seed(cfg.rng_seed)
self.exp_dir = cfg.exp_dir
self.rscan_base = cfg.data.rscan_base
self.scannet_base = cfg.data.scan_family_base
self.num_points = cfg.data.num_points
self.max_obj_len = cfg.data.max_obj_len
self.batch_size = cfg.dataloader.eval.batchsize
self.split = 'test'
self.save_obj_tokens = cfg.probe.save_obj_tokens
# dummpy accelerator
self.accelerator = Accelerator()
# load model
self.model = LeoAgent(cfg)
self.model.to(device)
self.model.eval()
self_best_ckpt = os.path.join(self.exp_dir, 'best.pth')
if os.path.exists(self_best_ckpt):
self.pretrained_ckpt_path = self_best_ckpt
elif cfg.pretrained_ckpt_path and os.path.exists(cfg.pretrained_ckpt_path):
self.pretrained_ckpt_path = cfg.pretrained_ckpt_path
else:
raise ValueError("No checkpoint to load for evaluation")
logger.info(f"Probe: load model from {self.pretrained_ckpt_path}")
self.load(path=self.pretrained_ckpt_path, model_only=True)
# prepare data
self.sources = [cfg.probe.sources] if isinstance(cfg.probe.sources, str) else list(cfg.probe.sources)
self.scene_ids = [cfg.probe.scene_ids] if isinstance(cfg.probe.scene_ids, str) else list(cfg.probe.scene_ids)
self.situations = [cfg.probe.situations] if isinstance(cfg.probe.situations, str) else list(cfg.probe.situations)
self.instructions = [cfg.probe.instructions] if isinstance(cfg.probe.instructions, str) else list(cfg.probe.instructions)
self.num_samples = max(len(self.sources), len(self.scene_ids), len(self.situations), len(self.instructions))
if len(self.sources) == 1:
self.sources = self.sources * self.num_samples
if len(self.scene_ids) == 1:
self.scene_ids = self.scene_ids * self.num_samples
if len(self.situations) == 1:
self.situations = self.situations * self.num_samples
if len(self.instructions) == 1:
self.instructions = self.instructions * self.num_samples
assert len(self.sources) == len(self.scene_ids) == len(self.situations) == len(self.instructions)
self.data_dict = {
'source': self.sources,
'scene_id': self.scene_ids,
'prompt_before_obj': [self.role_prompt + self.situation_prompt.format(situation=s) for s in self.situations],
'prompt_middle_1': [self.egoview_prompt] * self.num_samples,
'prompt_middle_2': [self.objects_prompt] * self.num_samples,
'prompt_after_obj': [],
'obj_fts': [],
'obj_masks': [],
'obj_locs': [],
'anchor_locs': torch.zeros(self.num_samples, 3, device=device),
'img_fts': torch.zeros(self.num_samples, 3, 224, 224, device=device),
'img_masks': torch.zeros(self.num_samples, 1, dtype=torch.bool, device=device),
}
for instruction in self.instructions:
if 'USER:' in instruction:
# dialogue
self.data_dict['prompt_after_obj'].append(instruction)
else:
# single question
self.data_dict['prompt_after_obj'].append(self.task_prompt.format(instruction=instruction))
anchor_orient = torch.zeros(self.num_samples, 4, device=device)
anchor_orient[:, -1] = 1
self.data_dict['anchor_orientation'] = anchor_orient
# load scene
for source, scene_id in zip(self.sources, self.scene_ids):
obj_fts, obj_masks, obj_locs = self.load_scene(source, scene_id)
self.data_dict['obj_fts'].append(obj_fts)
self.data_dict['obj_masks'].append(obj_masks)
self.data_dict['obj_locs'].append(obj_locs)
self.data_dict['obj_fts'] = torch.stack(self.data_dict['obj_fts']).to(device)
self.data_dict['obj_masks'] = torch.stack(self.data_dict['obj_masks']).to(device)
self.data_dict['obj_locs'] = torch.stack(self.data_dict['obj_locs']).to(device)
self.save_dir = os.path.join(self.exp_dir, 'probe')
iu.make_dir(self.save_dir)
self.log_path = os.path.join(self.save_dir, 'results.json')
if os.path.exists(self.log_path):
with open(self.log_path, 'r') as f:
self.log = json.load(f)
else:
self.log = {}
if self.pretrained_ckpt_path not in self.log:
self.log[self.pretrained_ckpt_path] = []
def load_scene(self, source, scene_id):
if source.lower() in ['3rscan', 'scannet']:
if source.lower() == '3rscan':
obj_pcds = self.load_rscan(scene_id)['obj_pcds']
elif source.lower() == 'scannet':
obj_pcds = self.load_scannet(scene_id)['obj_pcds']
selected_obj_pcds = list(obj_pcds.values())[:self.max_obj_len]
elif source.lower() == 'objaverse':
raise NotImplementedError
elif source.lower() in ['mp3d', 'hm3d']:
raise NotImplementedError
elif source.lower() in ['cliport', 'arnold']:
raise NotImplementedError
else:
raise ValueError(f"Unsupported source: {source}")
obj_fts, obj_locs, _ = self.preprocess_pcd(selected_obj_pcds, return_anchor=False)
obj_fts = pad_tensors(obj_fts, lens=self.max_obj_len, pad=1.0).float() # O, num_points, 6
obj_masks = (torch.arange(self.max_obj_len) < len(obj_locs)) # O
obj_locs = pad_tensors(obj_locs, lens=self.max_obj_len, pad=0.0).float() # O, 6
return obj_fts, obj_masks, obj_locs
@torch.no_grad()
def run(self):
for i in trange( ceil( self.num_samples / self.batch_size ) ):
batch_data_dict = {}
for k in self.data_dict.keys():
batch_data_dict[k] = self.data_dict[k][self.batch_size*i: self.batch_size*(i+1)]
output = self.forward(batch_data_dict, inference=True)
for j in range(self.batch_size):
idx = self.batch_size * i + j
if idx >= self.num_samples:
break
response_log = {
'source': self.sources[idx],
'scene_id': self.scene_ids[idx],
'situation': self.situations[idx],
'instruction': self.instructions[idx],
'response': output['output_txt'][j],
}
logger.info(response_log)
self.log[self.pretrained_ckpt_path].append(response_log)
if self.save_obj_tokens:
torch.save({
'obj_tokens': output['obj_tokens'][j].unsqueeze(0).cpu(),
'obj_masks': output['obj_masks'][j].unsqueeze(0).cpu(),
}, os.path.join(self.save_dir, f'{self.sources[idx]}-{self.scene_ids[idx]}.pth'))
with open(self.log_path, 'w') as f:
json.dump(self.log, f, indent=2)
@hydra.main(config_path='configs', config_name='default', version_base=None)
def main(cfg):
naming_keys = [cfg.name]
for name in cfg.naming_keywords:
key = str(rgetattr(cfg, name))
if key:
naming_keys.append(key)
exp_name = '_'.join(naming_keys)
# Record the experiment
cfg.exp_dir = os.path.join(
cfg.base_dir, exp_name,
f"{datetime.now().strftime('%Y-%m-%d-%H:%M:%S')}" if 'time' in cfg.naming_keywords else ""
)
iu.make_dir(cfg.exp_dir)
prober = LeoProber(cfg)
prober.run()
if __name__ == '__main__':
main()