forked from kly1997/head_shoulder-detection-by-yolov3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
trans.py
132 lines (110 loc) · 4.07 KB
/
trans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from keras.preprocessing.image import load_img, img_to_array
target_image_path = ''
style_reference_image_path = ''
width,height = load_img(target_image_path).size
img_height = 400
img_width = int(width*img_height/height)
import numpy as np
from keras.applications import vgg19
def prepocess_image(image_path):
img = load_img(image_path, target_size=(img_height, img_width))
img = img_to_array(img)
img = np.expand_dims(img, axis=0)
img = vgg19.preprocess_input(img)
return img
def deprocess_image(x):
x[:, :, 0] += 103.939
x[:, :, 1] += 116.779
x[:, :, 2] += 123.68
x = x[:, :, ::-1]
x = np.clip(x, 0, 255).astype('uint8')
return x
from keras import backend as K
target_image = K.constant(prepocess_image(target_image_path))
style_reference_image = K.constant(prepocess_image(style_reference_image_path))
combination_image = K.placeholder((1, img_height, img_width, 3))
input_tensor = K.concatenate([target_image, style_reference_image, combination_image], axis=0)
model = vgg19.VGG19(input_tensor=input_tensor,weights='imagenet', include_top=False)
print('Model loaded')
def content_loss(base,combination):
return K.sum(K.square(combination-base))
def gram_matrix(x):
features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1)))
gram = K.dot(features, K.transpose(features))
return gram
def style_loss(style, combination):
S = gram_matrix(style)
C = gram_matrix(combination)
channels = 3
size = img_width * img_height
return K.sum(K.square(S-C)/4.*(channels**2)*(size**2))
def total_variation_loss(x):
a = K.square(
x[:, :img_height-1, :img_width-1, :] -
x[:, 1:, :img_width -1, :]
)
b = K.square(
x[:, :img_height - 1, :img_width - 1, :] -
x[:, :img_height - 1, 1:, :]
)
return K.sum(K.pow(a+b), 1.25)
output_dict = dict([(layer.name, layer.output) for layer in model.layers])
content_layer = 'block5_conv2'
style_layers = ['block1_conv1',
'block2_conv1',
'block3_conv1',
'block4_conv1',
'block5_conv1']
total_variation_weight = 1e-4
style_weight = 1.
content_weight = 0.025
loss = K.variable(0.)
layer_features = output_dict[content_layer]
target_image_features = layer_features[0.:,:,:]
combination_features = layer_features[2.:,:,:]
loss += content_weight*content_loss(target_image_features,combination_features)
for layer_name in style_layers:
layer_features = output_dict[layer_name]
style_reference_features = layer_features[1, :,:,:]
combination_features = layer_features[2, :,:,:]
sl = style_loss(style_reference_features,combination_features)
loss += ((style_weight/style_layers)) * sl
loss += total_variation_weight*total_variation_loss(combination_image)
grads = K.gradients(loss, combination_image)[0]
fetch_loss_and_grads = K.function([combination_image], [loss, grads])
class Evaluator(object):
def __init__(self):
self.loss_value = None
self.grads_values = None
def loss(self,x):
assert self.loss_value is None
x = x.reshape((1, img_height, img_width, 3))
outs = fetch_loss_and_grads([x])
loss_value = outs[0]
grad_values = outs[1].flatten().astype('float64')
self.loss_value = loss_value
self.grads_values = grad_values
return self.loss_value
def grads(self,x):
assert self.loss_value is not None
grad_values = np.copy(self.grads_values)
self.loss_value = None
self.grads_values = None
return grad_values
evaluator = Evaluator()
from scipy.optimize import fmin_l_bfgs_b
import scipy.misc
import time
result_prefix = 'myresult'
iterations = 20
x = prepocess_image(target_image_path)
x = x.flatten()
for i in range(iterations):
print('Start of iteration',i)
start_time = time.time()
x, min_val, info = fmin_l_bfgs_b(evaluator.loss,x,fprime=evaluator.grads,maxfun=20)
print('Current loss value:', min_val)
img = x.copy().reshape((img_height, img_width, 3))
img = deprocess_image(img)
fname = result_prefix + '_at_iteration_d%.png'%i
scipy.misc.imsve