forked from FederatedAI/Practicing-Federated-Learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.py
60 lines (39 loc) · 1.66 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import models, torch
class Server(object):
def __init__(self, conf, eval_dataset):
self.conf = conf
self.global_model = models.get_model(self.conf["model_name"])
self.eval_loader = torch.utils.data.DataLoader(eval_dataset, batch_size=self.conf["batch_size"], shuffle=True)
def model_aggregate(self, weight_accumulator, cnt):
for name, data in self.global_model.state_dict().items():
if name in weight_accumulator and cnt[name] > 0:
#print(cnt[name])
update_per_layer = weight_accumulator[name] * (1.0 / cnt[name])
#update_per_layer = weight_accumulator[name] * self.conf["lambda"]
if data.type() != update_per_layer.type():
data.add_(update_per_layer.to(torch.int64))
else:
data.add_(update_per_layer)
def model_eval(self):
self.global_model.eval()
#print("\n\nstart to model evaluation......")
#for name, layer in self.global_model.named_parameters():
# print(name, "->", torch.mean(layer.data))
total_loss = 0.0
correct = 0
dataset_size = 0
for batch_id, batch in enumerate(self.eval_loader):
data, target = batch
dataset_size += data.size()[0]
if torch.cuda.is_available():
data = data.cuda()
target = target.cuda()
output = self.global_model(data)
#print(output)
total_loss += torch.nn.functional.cross_entropy(output, target,
reduction='sum').item() # sum up batch loss
pred = output.data.max(1)[1] # get the index of the max log-probability
correct += pred.eq(target.data.view_as(pred)).cpu().sum().item()
acc = 100.0 * (float(correct) / float(dataset_size))
total_l = total_loss / dataset_size
return acc, total_l