forked from FederatedAI/Practicing-Federated-Learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
34 lines (30 loc) · 1.06 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import torch
from torchvision import models
import math
def get_model(name="vgg16", pretrained=True):
if name == "resnet18":
model = models.resnet18(pretrained=pretrained)
elif name == "resnet50":
model = models.resnet50(pretrained=pretrained)
elif name == "densenet121":
model = models.densenet121(pretrained=pretrained)
elif name == "alexnet":
model = models.alexnet(pretrained=pretrained)
elif name == "vgg16":
model = models.vgg16(pretrained=pretrained)
elif name == "vgg19":
model = models.vgg19(pretrained=pretrained)
elif name == "inception_v3":
model = models.inception_v3(pretrained=pretrained)
elif name == "googlenet":
model = models.googlenet(pretrained=pretrained)
if torch.cuda.is_available():
return model.cuda()
else:
return model
def model_norm(model_1, model_2):
squared_sum = 0
for name, layer in model_1.named_parameters():
# print(torch.mean(layer.data), torch.mean(model_2.state_dict()[name].data))
squared_sum += torch.sum(torch.pow(layer.data - model_2.state_dict()[name].data, 2))
return math.sqrt(squared_sum)