-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAccessory_Tools.Connect_Nearby_Linear_Features_Tool.pyt.xml
972 lines (967 loc) · 86.5 KB
/
Accessory_Tools.Connect_Nearby_Linear_Features_Tool.pyt.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
<?xml version="1.0"?>
<metadata xml:lang="en"><Esri><CreaDate>20230601</CreaDate><CreaTime>11013900</CreaTime><ArcGISFormat>1.0</ArcGISFormat><SyncOnce>TRUE</SyncOnce><ModDate>20240624</ModDate><ModTime>11191400</ModTime><scaleRange><minScale>150000000</minScale><maxScale>5000</maxScale></scaleRange><ArcGISProfile>ItemDescription</ArcGISProfile></Esri><tool name="Connect_Nearby_Linear_Features_Tool" displayname="Connect Nearby Linear Features Tool" toolboxalias="AccessoryTools" xmlns=""><arcToolboxHelpPath>c:\program files\arcgis\pro\Resources\Help\gp</arcToolboxHelpPath><parameters><param name="inFeat" displayname="Input Bathymetric High/Low Features" type="Required" direction="Input" datatype="Feature Layer" expression="inFeat"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN STYLE="font-weight:bold;">This is a feature class delineates the bathymetric </SPAN><SPAN STYLE="font-weight:bold;">high </SPAN><SPAN STYLE="font-weight:bold;">or low </SPAN><SPAN STYLE="font-weight:bold;">features.</SPAN></P></DIV></DIV></DIV></dialogReference><pythonReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN STYLE="font-weight:bold;">This is a feature class delineates the bathymetric </SPAN><SPAN STYLE="font-weight:bold;">high</SPAN><SPAN STYLE="font-weight:bold;"> or low</SPAN><SPAN STYLE="font-weight:bold;"> </SPAN><SPAN STYLE="font-weight:bold;">features.</SPAN></P></DIV></DIV></DIV></pythonReference></param><param name="distThreshold" displayname="Distance Threshold" type="Required" direction="Input" datatype="Linear Unit" expression="distThreshold"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN STYLE="font-weight:bold;">This is the distance threshold value used to identify</SPAN><SPAN STYLE="font-weight:bold;"> suitable</SPAN><SPAN STYLE="font-weight:bold;"> nearby features.</SPAN></P></DIV></DIV></DIV></dialogReference><pythonReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN STYLE="font-weight:bold;">This is the distance threshold value used to identify</SPAN><SPAN STYLE="font-weight:bold;"> suitable</SPAN><SPAN STYLE="font-weight:bold;"> nearby features.</SPAN></P></DIV></DIV></DIV></pythonReference></param><param name="angleThreshold" displayname="Angle Threshold" type="Required" direction="Input" datatype="Double" expression="angleThreshold"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN STYLE="font-weight:bold;">This is the </SPAN><SPAN STYLE="font-weight:bold;">intercepting </SPAN><SPAN STYLE="font-weight:bold;">angle </SPAN><SPAN STYLE="font-weight:bold;">threshold value used to identify</SPAN><SPAN STYLE="font-weight:bold;"> suitable</SPAN><SPAN STYLE="font-weight:bold;"> nearby features.</SPAN></P></DIV></DIV></DIV></dialogReference><pythonReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN STYLE="font-weight:bold;">This is the </SPAN><SPAN STYLE="font-weight:bold;">intercepting </SPAN><SPAN STYLE="font-weight:bold;">angle </SPAN><SPAN STYLE="font-weight:bold;">threshold value used to identify</SPAN><SPAN STYLE="font-weight:bold;"> suitable</SPAN><SPAN STYLE="font-weight:bold;"> nearby features.</SPAN></P></DIV></DIV></DIV></pythonReference></param><param name="distWeight" displayname="Distance Weight" type="Required" direction="Input" datatype="Double" expression="distWeight"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN STYLE="font-weight:bold;">This is the weight assigned to the distance criterion.</SPAN></P></DIV></DIV></DIV></dialogReference><pythonReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN STYLE="font-weight:bold;">This is the weight assigned to the distance criterion.</SPAN></P></DIV></DIV></DIV></pythonReference></param><param name="angleWeight" displayname="Angle Weight" type="Required" direction="Input" datatype="Double" expression="angleWeight"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN STYLE="font-weight:bold;">This is the weight assigned to the intercepting angle criterion.</SPAN></P></DIV></DIV></DIV></dialogReference><pythonReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN STYLE="font-weight:bold;">This is the weight assigned to the intercepting angle criterion.</SPAN></P></DIV></DIV></DIV></pythonReference></param><param name="conOption" displayname="Connection Algorithm" type="Required" direction="Input" datatype="String" expression="Mid points on Minimum Bounding Rectangle | Most distant points on feature | Mid points and Most distant points"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN STYLE="font-weight:bold;">Select an algorithm</SPAN><SPAN STYLE="font-weight:bold;"> </SPAN><SPAN STYLE="font-weight:bold;">from the drop-down list to identify the connection points.</SPAN></P></DIV></DIV></DIV></dialogReference><pythonReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN STYLE="font-weight:bold;">Select an algorithm</SPAN><SPAN STYLE="font-weight:bold;"> </SPAN><SPAN STYLE="font-weight:bold;">from the drop-down list to identify the connection points.</SPAN></P></DIV></DIV></DIV></pythonReference></param><param name="areaThreshold" displayname="Area Threshold" type="Optional" direction="Input" datatype="Areal Unit" expression="{areaThreshold}"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN STYLE="font-weight:bold;">This is the area threshold to select a subset of features for the connection process.</SPAN></P></DIV></DIV></DIV></dialogReference><pythonReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN STYLE="font-weight:bold;">This is the area threshold to select a subset of features for the connection process.</SPAN></P></DIV></DIV></DIV></pythonReference></param><param name="lwRatioT" displayname="Length_to_Width Ratio Threshold" type="Optional" direction="Input" datatype="Double" expression="{lwRatioT}"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN STYLE="font-weight:bold;">This is the lenth to width ratio threshold to select a subset of features for the connection process.</SPAN></P></DIV></DIV></DIV></dialogReference><pythonReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN STYLE="font-weight:bold;">This is the lenth to width ratio threshold to select a subset of features for the connection process.</SPAN></P></DIV></DIV></DIV></pythonReference></param><param name="dissolveFeat" displayname="Output Connected Features" type="Required" direction="Output" datatype="Feature Class" expression="dissolveFeat"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN STYLE="font-weight:bold;">This is the output feature class after merging the </SPAN><SPAN STYLE="font-weight:bold;">identified </SPAN><SPAN STYLE="font-weight:bold;">nearby bathymetric </SPAN><SPAN STYLE="font-weight:bold;">high </SPAN><SPAN STYLE="font-weight:bold;">or low </SPAN><SPAN STYLE="font-weight:bold;">features. </SPAN></P></DIV></DIV></DIV></dialogReference><pythonReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN STYLE="font-weight:bold;">This is the output feature class after merging the </SPAN><SPAN STYLE="font-weight:bold;">identified </SPAN><SPAN STYLE="font-weight:bold;">nearby bathymetric </SPAN><SPAN STYLE="font-weight:bold;">high </SPAN><SPAN STYLE="font-weight:bold;">or low </SPAN><SPAN STYLE="font-weight:bold;">features. </SPAN></P></DIV></DIV></DIV></pythonReference></param><param name="tempFolder" displayname="Temporary Folder" type="Required" direction="Input" datatype="Folder" expression="tempFolder"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN STYLE="font-weight:bold;">This is the nominated folder to store the temporary files generated by the tool.</SPAN></P></DIV></DIV></DIV></dialogReference><pythonReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN STYLE="font-weight:bold;">This is the nominated folder to store the temporary files generated by the tool.</SPAN></P></DIV></DIV></DIV></pythonReference></param></parameters><summary><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>A linear bathymetric </SPAN><SPAN>high </SPAN><SPAN>or low </SPAN><SPAN>feature </SPAN><SPAN>(e.g., ridge</SPAN><SPAN> or valley/channel</SPAN><SPAN>) </SPAN><SPAN>is sometimes broken into multiple smaller and disconnected features due to several possible reasons: </SPAN></P><UL><LI><P><SPAN>dificiency in the bathymetric data, </SPAN></P></LI><LI><P><SPAN>deficiency in the mapping method, and</SPAN></P></LI><LI><P><SPAN>natural local processes such as ersosion and desposition.</SPAN></P></LI></UL><P><SPAN>Ideally, these disconnected features should be merged to form a single integrated linear feature to facilitate the subsequent attribute generation and classification. This tool is used to connect (or merge) two or multiple bathymetric </SPAN><SPAN>high</SPAN><SPAN> or low</SPAN><SPAN> </SPAN><SPAN>features that satitifying </SPAN><SPAN>a number of </SPAN><SPAN>conditions</SPAN><SPAN> based on distance and orientation. </SPAN><SPAN>The first step of the process is to identify the potential connection points for each feature. </SPAN><SPAN>There are three algorithms</SPAN><SPAN> available for this step</SPAN><SPAN>. </SPAN></P><OL><LI><P><SPAN>The 'Mid points to Minimum Bounding Rectangle' algorithm identifies the connection points as the middle points on the correponding sides of the minimum bounding rectangle. Based on the orientation of the feature, these sides could either be North and South sides or East and West sides. </SPAN></P></LI><LI><P><SPAN>The 'Most distan</SPAN><SPAN>t</SPAN><SPAN> points on feature' algorithm identifies the connection points as the intercepted locations between the feature and the corresponding sides of the minimum bounding rectangle.</SPAN></P></LI><LI><P><SPAN>The 'Mid points and Most distant points' algorithm identifies two sets of connection points; one using the 'Mid points' algorithm; the other using the 'Most distant points' algorithm.</SPAN></P></LI></OL><P><SPAN>The next step is to generate connection links from these connection points. These links are created from each feature to each of its nearby features that are within the distance threshold. In the following step, the tool selects a subset of these links based on certain criteria. These criteria are determined by the distance threshold, </SPAN><SPAN>the </SPAN><SPAN>angle threshold, </SPAN><SPAN>the </SPAN><SPAN>distance weight and </SPAN><SPAN>the </SPAN><SPAN>angle weight. In this step, there are six link directions to consider when determining which nearby features (if any)</SPAN><SPAN> </SPAN><SPAN>should be connected: south-to-north, west-to-north, south-to-east, west-to-east, south-to-west and east-to-north. For example, for the west-to-north link direction considers </SPAN><SPAN>whether </SPAN><SPAN>a feature orientated </SPAN><SPAN>(from the east) </SPAN><SPAN>to the west with a nearby feature orientated </SPAN><SPAN>from </SPAN><SPAN>the north</SPAN><SPAN> (to the south)</SPAN><SPAN> should be connected.</SPAN><SPAN> Finally, the nearby features identified from this subset of suitable connection links are merged. </SPAN></P><P><SPAN>When there are a large number of features in the dataset, the Area Threshold and Length to Width Ratio Threshold parameters can be used to select a subset of features for the above connection process.</SPAN></P><P><SPAN>Note that the output featureclasses from the 'Merge Connected Features Tool' can be used as the input to this tool. </SPAN></P><P><SPAN /></P></DIV></DIV></DIV></summary><scriptExamples><scriptExample><title>Python Script example</title><code>import arcpy
from arcpy import env
from arcpy.sa import *
arcpy.CheckOutExtension("Spatial")
# import the python toolbox
arcpy.ImportToolbox("C:/semi_automation_tools/User_Guide/accessory_tools/Accessory_Tools.pyt")
env.workspace = 'C:/semi_automation_tools/testSampleCode/Point_Cloates.gdb'
env.overwriteOutput = True
# specify input and output parameters of the tool
inFeat = 'pc_tpi10_075std_45m2'
distT = '200 Meters'
angleT = 20
distW = 2
angleW = 1
conOption = 'Mid points on Minimum Bounding Rectangle'
outFeat = 'pc_tpi10_075std_45m2_connected'
tempFolder = 'C:/semi_automation_tools/temp'
# execute the tool with user-defined parameters
arcpy.AccessoryTools.Connect_Nearby_Linear_Features_Tool(inFeat,distT,angleT,distW,angleW,conOption,'#','#',outFeat,tempFolder)</code></scriptExample></scriptExamples></tool><dataIdInfo><idCitation><resTitle>Connect Nearby Linear Features Tool</resTitle></idCitation><searchKeys><keyword>This tool connects nearby linear bathymetric high or low features.</keyword></searchKeys><idCredit>(c) Commonwealth of Australia (Geoscience Australia) 2024</idCredit><resConst><Consts><useLimit><DIV STYLE="text-align:Left;"><DIV><P><SPAN><SPAN>Creative Commons Attribution 4.0 International Licence</SPAN></SPAN></P></DIV></DIV></useLimit></Consts></resConst></dataIdInfo><distInfo><distributor><distorFormat><formatName>ArcToolbox Tool</formatName></distorFormat></distributor></distInfo><mdHrLv><ScopeCd value="005"/></mdHrLv><mdDateSt Sync="TRUE">20240624</mdDateSt><Binary><Thumbnail><Data EsriPropertyType="PictureX">/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsK
CwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQU
FBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAIJAuADASIA
AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA
AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3
ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm
p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA
AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx
BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK
U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3
uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KK
KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo
AKKKKACiiigAooooAKa7rGrMzBVUZLMcAD1rk/iR8VfDXwp0b+0fEWoLbBsiC1j+ee4Yfwxp1Pbn
gDPJFfCXxq/ad8S/Fx5rCFm0Lw0SQNOt3+edexmcfe/3RhfYkZpTlClHnquy/F+i/peZ85nGfYLJ
afNiJXk9ord/5erPsrw9+0L4Z8Y/FAeDPD7tq0kcEs1xqULD7OpTA2If+Wh56j5fQnt6jX5+/sTf
8luj/wCwbcf+yV+gVOM41KcKkVa6/Vr9AyDM55xgY4ycbczenZJ2QUUUUH0YUUUUAFFFFABRRRQA
UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABX
FfESPw9q2peD9B1z7Q899rEd3p8Nvna1xaK12jSEdEUwg+7bB3rta4i51vSNU+MlpoMulfaNY0nR
m1WPUWbi2SeUw7APV/Jfn0jI70AdvRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA
BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF
FFFABXF/GL4hQ/C34c6z4hfa09vFstY2/wCWk7fLGuO43EE+wJ7V2lfEP7cvxK/trxXp3gyzm3Wm
kqLq8Cnhrl1+RT7pGc/9tT6U+aNNOpLaOv8AwPm9DxM6zGOVYCpipbpaebex85eJPE+reMtZn1bX
NQn1PUpvv3Fw2TjsoHRVHZQAB2FZlFFfJ1Kk60nObuz+TK9eriajq1pOUnu2e9/sTn/i+EY7/wBm
3H80r9A6/Pv9if8A5LlF/wBgy5/mlfoJX02H/wB2pej/APSpH9JcEf8AIkpesv8A0phRRRWp94FF
FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFcn4J+Knhb4jSeJI/D2qrfv4d1KbSNUVoJYTb3UX+sT9
4q7gP765U4OCcGgDrKK47wB8XPC/xR0bStX8L3tzq2lamLo216mn3KQn7PL5UoZ3jAjO/IUOQXCs
U3BSRrXHjTRrTxnY+E5bzZr99Yz6lb2flOd9vC8Ucr79u0YaeIYJBO7gEA4ANuiiigAoqmmqQyat
NpoS5FxFAlwztayiEqzMoCzFfLZsocoGLKCpIAZSc/xp400j4feG7rXddujZ6ZbNGkkqxtId0kix
oNqgnl3UdMDOTgZNAG5RRRQAUUUUAFFFFABRRRQAUVmx+JNJm1aXSo9Ts5dViiMz2Mc6tOsYIBYx
g7sAsozjqR61laV45TxJpeo3ej6Rqtw1soMMd/ZS6f8AamIOBH56occfeIxyMZqPaR2udUcLXknL
kdlbV6LXbV6alL4jfFCz+Hz6VZfYrjVdc1ppoNK063IX7VPHEXEbOeIwcAbjwM5Nclof7QF+tnrl
z4u+HXibwfBo+nS6lcXU8cdxbNHGRuRJUb5nwchcchWOeKwfEiXXj/40eELG5mj8MeP/AA7p13rF
pahDqlgtrORbM8pHkHzuPlAJVcg5bpWH+3hH4i0L9knxHead4lvoPENqLS2W9tpDax3BnvIIXEqJ
1QrIw28jBPWuupKMKKjCneTje7utbu2na1nsehSw+GozgsXLS/vcurt3i17jutF7z18jvfBP7Wnw
n8emVNO8YWdtNDC1xLFqavZlEXqd0oVTjOflJ4z6Gtr4dfHnwj8UvEGqaNoF1NPdWCmQtJCVSaMM
FLxnPK5K9cHkcV8C/sR+FdFb9qafwlrNrDqGqab4Z1dNd0XU7aOQWV7HqEVuAAc7laA7g3Rlmavu
jxJ8L/hZ4A8P69qV7pun+FtOvrJ9Pvbm0ka13QuQTEgQjBJUYCDJxxXnYN1q0IvELlk90tf13+8O
J8Pl2GzJU8hxDlhot80ppXl/ha5bJd2te3fZ+Inx4+H3wl1vQdH8YeLdN8P6lrsvk6fb3ku1pmzj
J4+Rc8bmwueM5q/4T17UNc8ZeNoLrSksrLSL2306zvGiZZLxTaQ3DvuP3kV7goCvG5HHUHH503H7
L3wz/a6+OEVjFqPi21sdN0uX7FeapqC3buI5FKKY3TIhzI52b8nOcrkivTfhT+2N8TPDfxLufh34
o0+L4g6xJqp063uY57eyZDvK9YoyjL3yecDkk1rja1DBOLnO6lomk3r20vrv9zNOH8mxHFNKvWyi
UaipK795R0Wja5mlaL0ep970Ui52jIwe+KWtDwQooooAKKKKACiiigAooooAKKKKACiiigAooooA
KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo
oooAKKKKAMLxz4us/AXg/V/EN+f9F063adlzguQPlQe7NhR7kV+Vuva5e+J9c1DV9Rk86/v53uZ3
7F2JJx6AZwB2Ar60/bs+JXlw6T4Gs5eZMajqG0/wgkQofqQzEf7KHvXx5XmZhV5YRorrq/0/z+aP
wbxAzX22Ihl9N6Q1l6vb7l+YUUUV4R+Rnvn7EsbSfHBSqlgml3LMQOg3RjJ/Ej86/QKvkr9gnwZ5
Ol+JfFc0fzXEqabbMRghUAeQj1BLIPqhr61r66nF06NOD6L87v8AU/qXhHDTwuTUIT3ab+93Ciii
qPsAooooAKKKKACiiigAooooAKKKKACiiigAr4W0Wa+8L33iC20yOYS/EvxJr/hHzoFYiG5j1u7d
ZWI+6VtZ7993H/HuoznbX3TRQB+ft1a+ILPwza23gaO5h8QQ6b8S49Mj0wYuFYa1CAIB/wA9Audm
P4tuK7z4Mf8ACmx+1V4RHwgTR47T/hBNT+3p4fQJbLJ9r07aJlX5Rd4z5gb99jy/M/gr6u8M+LdJ
8ZWd1d6PdfbLe1vbnTpn8t023FvK0MyYYAna6MuRwcZBI5rYoA+PvjbcfBxf2rdbh+MbaK2mP4Ds
WsYfEgDWTyC9v92xX+Rrraf3eB5uDL5f8dcn4Zj8Kw2vh+P9p77L5C+BbAaH/wAJ2c/v/Muftflm
X/mI+X9i3bf3/Tb/ABV9i2/w8062+J1/46Wa6OrXmkW+iyQs6+QIYZpplYLt3by07gndjAXgckjf
ErQY/EGk6JLPdW+qarJeRWdvc2M8Jl+y/wCvYb0A2DI2t0cMChYHNAHwl4stPEOofD65tfGjakmv
T+EPAsV615M8V8A3iOcL5rqQ6zbCu5shg2TkGtr48fDXwb4Vb48eGrDwxoumeD7HTPCeu/2TFYxR
2NtcNfXUdxdiLbsjYwQqHcAZVDuPWvuHwX4y0f4heFdL8SeH7z+0NF1OBbm0uvKePzI26NtcBh9C
Aa2qAPhPxdJ4G8I/HqLV/D1x4H8eajPrOmfYfDribTfFOmxNBaJB/Y11GT9o08R7pTCkaQFXnDSl
fMUfdlYPiDxcmg31nZrpOrapcXJ4/s+yaSONc4LPKcIv0LZx0BpLi88St4nit7fStNGgKAZr+e/c
XDZH3UgERXg92kH0rPnjex1xwtWUVJ2SabV2ldLtd6+S3fQ36jnnjtYZJppFiijUs8kjBVUDqST0
FYmm6Lrdv4iu7++8Rveac+5bfS47OKKOIEgqWf5ndgBjO4A5Py9MRaD8PdF8O29/DFHd3w1BQl22
rX09+06gMNrGd3+X5m+UYHOMUc0nsvv/AOBcp06EE+apd6W5U7eablytNeSab69RZPiDoLaFcavY
Xv8Ab1lBN9nc6FG2ov5vHybYA5yNwzxwDk4HNR6h4i1660WwvNA8OC5uLondb6zdmwNuvYyYjkb8
ApPNdFb28VnAkMESQQxjakcahVUegA6VLS5ZveX3f8G4/a4eDvGnfX7Te3b3eV+d7/8AB57VdL8R
6leadJa65b6PZxqrXdtDZCeSV85KrK7YVMcf6vd3yOz38GWU3ihdeludTlvE/wBVAdSnFrH8m0kW
4cRkkZ5ZScngit6in7OO71IWKqxXLB8ujWiSbT3Ta1fzb002KVhomnaVNcy2Vha2ctzI0s8lvCqN
K7HLMxA+Ykkkk+tXa8Z+B/7U3hD48+PviV4U8Pzbr3wVqa2MjlwRdx7QDPH/ALImWaPjPCI2fnAH
s1WklojmlKU3zSd2eS+A4fDXiH47/EHX9Om1KbXdNgtdDvRcrGLVAF83EBHzHnG7d0I4rp/jB8Kd
J+Nnw+1Hwfrlxe2umX0lvLJLp7okwMM8c6bS6sMFolByp4J6HmuZ/Zzj8N6p4d8R+LPDMmqTWvif
XbvUZZNWEYk8wP5TKnl8eUDGducnB5pf2nPiafhj8KNRubWbytX1H/iX2JVsMsjg7pBjoUQMwPqF
9a7sQr1uTtZa9LLX7tSMZWhhozq1HaMFrfyWp458WtQ+F3wL/aE1v4raQbrVPilqmjDRLvSLWeMW
IUNGwnuMIWWXEUa4D5KqPlGd1fM/xF+KHiT4qa0dS8Rag10yk+Tax/Lb24PaNOg+pyTjkmuVJLMz
MSzMcszHJJPUn3pK+YxGOlNOFHSP4v8AyXkvnc/mXPuLMXnDdKn7lLst36v9Nj3H9kC5ns/idq1x
bTW1vcxeH72SKa9k8uBGBjIaRsHagPJODgZ4r6H/AGTP2c9K+GPw/wBE1XWX03xP41uLTZeeIbe4
N5FdDz3lSWORh8xbKMXxklV9BXxb4L0WLxXZ+LfDknibSfCL63ocunR6lrU4htcyTwAxM2ePMUMg
68t0PQ/pz4B8Njwb4F8O6ANp/svTreyJToTHGqEj6kV7dCMXgKal/VnLX8T9s4Dr1sPkEPZTceZy
Ts7XXM3Z+V7aFOO91TwfJr1/4j1e0uPDMWbq3vJIzHPaISS8UoVdrIgxtk4OOGBxvPT29zFeW8Vx
bypPBKoeOWNgyupGQwI4II708gMCCMiuVvNJ1PwpHo8HhHTdLXRYZmW70kJ5BEcjgmSBh8qlCXYo
VwwJAKkDOOtPzX4n3/uYp2doz+Si0l+Dut9nfW1rvq6Kr2moWuoGcWtzDcmCQwy+TIH8uQdUbB4Y
ZHB55qxWpwOLi7NBRRRQIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi
iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqnrGrWug6Te6nfSiCys4XuJ5
W6IiKWY/kDVyvmb9uH4lf2B4JsvCNpLtvdbfzLnb1W1jIJHtvfaPcK4qo23lstX6HBj8ZTy/C1MV
V2irnx38QvGl18RPG2s+JLzIm1C4aVUY58uMfLGn/AUCr+Fc9RRXydaq61R1JdT+Q8ViamMrzxFV
+9Jtv5hSM21ST2pa7n4H+Df+E++LPhnRXj8y2ku1nuVIyDDF+8cH0yFK/VhV4al7atGm9m9fTr+B
tl2EljsXSw0ftNL/AD/A/Qj4E+Cz8P8A4SeGdGePy7qO0Wa5UjkTSEySA/RnI+gFd7RRX1Mpc0nJ
9T+wacI0oKEdkrBRRRUmgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV+cPxI8R+GdY+JVl4l0618E
eGfE+n/Eaxju7eKO51PxmYl1dbaa5u7rej6faPEVVYXSWExyxosg8yNR+j1FAHwzpcPgmTxJA3xe
Ojj4Zf8ACQ+Mlg/4SZ4xpH9rnWH8vzhKfK837OLjyi/I/e7ea5/4OxeBYfAnwxX4krar8IftXi42
/wDwmgP9mnUDrD/ZDe/afk837P8AafL8/ndvx8+K+0vH3w5u/GV9p19pvjbxN4LvrJJIvN0Ce3aO
eN9pKywXUE8LEFQVfy968gMAzA63gfwXpnw88LWOgaQkosrUOd9xIZJZZHdpJJZHPLO7s7se5Y0A
fIXw98DaT8Q/EXwt0jxHpK694DN34rm8PabrkPnwT6Qs1v8AYQ0UoO+FVIaIODhFhYfdU1Q8JeHf
CVv8afhpqutaZoscq+MvHFlZ31/bwhhcDUJGtYY3cffDeYY1BzncVHWvuqigD4B+CfgTw/4K8E/s
seI9D0m203xDr4vbPVtWhT/StQgbSL2byZ5T80kayQwlUYlU8tAoUACl+A3wH8A6tbfs8DUPCum6
gmvfD/UbnWo7u3WVNWeP+zjCbtWBE/lGRvL8wHy8LtxtXH37RQB47+x5fXGpfsufDCe6mkuJjoVs
pkkYsxCrtXJ9gAPwr2Kqf9r2X9rf2X9pjGo+R9pFtu+cxbtu8DuN2Bntkeoq5SunsVKMo25la4UU
UUyQooooAKyfFuj3niDwvq+l6fqk2h3t7aS20Op26B5bR3QqJUB4LLnIzxkCtaigD4B/Yp/YNsvg
N8fvHXiTRfHmr3LeGNV/4R6azntoxHqVvNpdjeHzSDkFZboEY/54qe5Ffb/j/wASWXg/wPr+t6i0
62On2M1zN9lx5pVUJITPG49BnjJFcT8G/wDkovx2/wCxztv/AFHtGp37SmpeH7f4W3Ol+JV1OTTd
eu7fSNmjtGt0XlkG3YZPl/hJOewNb4eHtKsYvq0aU4800jZ+Bnh3R/Cvwh8Kaf4fjvotG+wpc2qa
ls+0hJszfvdny78yHO3jOa+Mv2xPiV/wnHxTk0i1l8zS/DytZptOVa4ODM31BAT/ALZn1r7H+Lfj
a1+DXwn1HU4AqPZWy2mnwt/FMRsiXHcDgn2U1+Yks0lxK8s0jTTSMXeRzlmYnJJPck1x5hiOWnKd
9Zt/du/8vmz8q4/zb2GFWDg/equ7/wAK/wA2Mooor5Q/ns1fh/4Hsfid8XPBfhi61W002eW9W/jj
vJCiXSQOnmRDCnc5V8qpxlgvNfrTX5l/sfeH7Xxf+1hpD7Y/tHhjSZ9SkaR8Fkm3QqiDuwdUY8cA
DntX6aV9lTk1g6EL9G/vk/8AI/qbhCm6eQ4aL68z++T/AEszxz9rhtSb4G6lbaTrWpeHb691TSLB
dT0m6e2uoFn1O1icpIhDKdjsODyCR3ryT4jfFvxH4r8J/COO01e80bWLXVdHuvEv9mXDw75v7Wt9
OltZCpBMUkjXhKN18jBHUV9N/EDwLYfEbw6NF1Ka5gtRe2d9vtWVX8y2uYrmMZZWG0vCoPGSCcEH
kcU/7NPhNr/xNeJPqcU2v69p/iG523ClYprOeO4jiiBQ7IWmR5HXklp5SCCwxJ9eeaT/ABP8S6TN
qnxlh07w9D4OGtt4du9Lht7hdVubSO/+w/bHuBOIWkWUGRYmtywiyolBYir3hP4/eL9e+LF54Q1j
VfCvhHVJ7jULey8L69o9/aah5MTTJbXlrdPKINUV/KSR4oFj2JKcyAx4fuJv2atDuNakd9f8QHwr
Jq/9vSeDDPAdKe+83zvNOYftG3zwJvK87yjJzswSKt2/wDtm8XWOsap4y8VeIdO03UpdX07w/q1z
bzWdldP5mHSQQC5cIJZAiSzOiBgAo2JtSSWyNJ1J1LObbsra9lsvRHN/sm+JNdX9mDQfEHjHWl16
8W2ubyS8jgkWUxLJIcOZJpGkf5W+bIyCBtGMnhrP4gfFDxZ4s/Z+8UanqOlWHhLxdqVxeDR9HS4t
ri2hk0i8nt7a7kM7x3nARmYJEFkiBCtkFPffhf8AC+w+FfglPCllqF/q2jwyTG3j1TyWaCGRi3kA
xxpuRSWwX3PzyzVw/h/9lfQ/DviTwfqMXivxVc6X4OuJpvD3h64u7c2GnJLbywGFQIBLIixzEJ5s
jsgRVVlUsrMzPHNL/ai8X6F4M+H11e3fh3wVoeoeHNNvotZ8XWWqXem6peTeaZLR9V89l08osS4k
ujOzmYEK20hupsfH/jHwz8RPj9qt9448JWuiaa+kppsniUzWunaaJoIysjzG4ZSgWQkxqsfnSEfP
Fu47iT9lrT4/CeneFrDx7400rwzBosOgXmk215avBqFrGGXEgkt3MLujsryWxhZhjJyqlbevfsw+
HdY1HXbq11rXNDTVP7MmW202S2EVndae0ZtLmHzIHO9BEilHLxMBzGSc0AeMW37X/jaPw/8AEP7P
FoniTUdBbw7NpWoXHhzVPDtvexane/Zir2108koC7GZZ0Z0bepCnaQXfHL4nfFK08H/E7wfdeIdB
tPEPh8eH9Rh17RNKurVJrS9vGiMBhN6zo6vA2XEpV43K7FJJHqs37JmhaldeIL3WfF3izX9U15dL
XUb+/urbfMdPvDdWxWOO3SKLDHYVjRVK5O3zGaRug8dfs8eHfH9940vL6/1W1ufFWnadp1zJaSxD
7MLKaWa3lhDRsA4eYk796nao29cgHpNgl1HY2yXs0NxeLGonmt4jFG8mBuZULMVUnJClmIHGT1qx
Vewt5LOxtoJbqa+lijVHurgIJJmAALsEVVDHqdqgZPAA4qxQAUUUUAFFFFABRRRQAUUUUAFFFFAB
RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACMwjUsx2qoySe
1fl58bfiM/xU+Jms6+GZrJpPs9irDG22TITjtu5cj1c1+jnxS1j/AIR/4aeK9TDbWtdKupk/3hEx
UfnivyoUbVUe1ceOm4Yey+07fJa/nY/JPEPGTpYWjhYvSbbfy/4LFooor5s/BQr6w/YJ8G/aNa8S
+K5o8raxJptsxGRuciSXHuAsf4Oa+Tycc1+k/wCy74L/AOEJ+Cfh+CSPZd38Z1K44wS03zLkeoj8
tf8AgNe1lsPjq9tPv/4Cf3n6fwDgfrGYyxMlpTX4vT8rnq9FFFesf0MFFFFABRRRQAUUUUAFFFFA
BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBheJdItmkt9eGmyajq+jRTy2UcEvlySFoyGizkA
h8Lw3y7lQ9VBFvw34hsfFmg2GsabL51jewrNExG1sEdGB5VgcgqeQQQelaVYEc2t23jZ7dreOfw3
cWQkinj2q1rcI+GRxnLCRXUqQODG+eorJ+7K62f9X/T7jui/b0nCT96G139nVuKT03fMtV9rdtG/
RRRWpwhRRRQAUUUUAeVfBv8A5KL8dv8Asc7b/wBR7Rqi+MUnhzXviB8LvCet2+oXF9datJrOnfYp
EWKOWyj8zdOG6phyMDkmpfg3/wAlF+O3/Y523/qPaNXN/ELx14R0P4y6nrOo2l7JrXgnwy96lyJl
FqftEmxYNvXzXO0A9MN7V24SLdRtX0T272svxaNISULzlsk2eK/txfEr+3vGVh4PtJd1loy/aLsK
eGupF+UH/cjP5yMO1fMlXda1q88R6xfarqEvnX19O9zPJ6u7En8OelUq+RxtZVqz5fhWi/z+b1P5
J4gzN5tmNTEX93aPotvv3CiinRxSXEiRQo0s0jBERRksxOAB+NccIOpJQju9DwKdOVWcacN27L5n
0r/wTn8Mx6p4o8f+M2ls1lt3XQY7dM/aBGNkhkfjhWcELzz5Zr7nr5q/YJ8EzeGvg5c6te31tf6h
rl+9zJ9mGPs6IojWB/8AbQqwOOMmvpWvt8SlGapxd1FJLS2yP7Jw2HWDw9LDR2hGMfuSR5z+0D8Q
Nd+GXwwu9e8NWVhqOtrf6dZW1rqbulvIbm+gtyGZPmX5ZThgDg4O1sbT5r4j+PHjz4a61rng7X4f
DviLxXLBpc2g6lptpPp9jI19e/YglzC807r5MmJCyyfvEbaFQrk9t+1N8PdX+KnwW1LwzokE89/d
6hpb4tbpbaVIotQt5ZXSUsu1ljR2BBzlRjJwKjX9mnQtQ03xCviLX/EHivXdaS1jk8SalPBFf2q2
snm2otzbQxRReVNmVSseS5Jff0rlOg4Lx58YfGfgu41jwf4qfR9W1u3m8P6lZavoUN5pcE9pdavD
aSxvCLp5EkjYE8TMkiuAy7Q6NXt/2gviQnm+JbuLwsPCFv8AEJ/BLaXDZXJv5oW1I2Md0Lgz+XG6
s8ZaLynDBGIdN4ROo0v4L6B4m8QeLNL1TXPE3i3WVm0mTUfFepPaJKrWlwl5bafGsMEcKorASOEi
BP2jlixBXqpP2ePDknhebQTe6p9jl8WDxiz+bH5n2wX4vvLB8vHleaoXbjdt43Z+apjJS1RrUpTo
tRqKzaT+TV1961PBvD3xY+KHgHwh4y1K91W11u1PxA1SwutcXwzqOqJoNnCkrmV7OC6aaWEtHFEq
oyLCH3MXAxX0B4F+J8niT4JN4xOveDdamis7mf8AtjStTaPRJTFvxI8zB2t0woMinzDCd67pNm5q
H/DPcVjJrMmh+PPF/hmTUdck8QIdLuLTbbXEqMs6Kkls6SxSbyxS4WXawVk2FRWnafAfw7D8Kdd8
A3M+oajp+vLdnVdQuJ1W9vJrks007PGqqshZiRsVVXACqFAFUZHzZrP7UHi3XNG+Ifh4eI9I1+Bv
h5revad4o8LeH9T0SOG5tQsR+y3FxNLHexkzKyXFu4AMef4lNdb8Rfj58UNG+G/xG8aeD4/CzaJ4
Dt/sz2OvWtzPd6nPHaRTTzedHOiwqnnKBGY5DJ5TfPHvBXu9Q/ZR0zxFfX+oeJPHXjLxNql54f1D
wxJeX9xZx7bG8WMOiwwWscKspjDK4j3Et85dVRU8y+OHwI8V+OLrxr4O0PQfFWlaF4nit7ea903W
9M/sK9KxRx/a75JFW+hmQIqtHagpKIYgxIeQAA7vxb8ZPiCy/EXX/DEPhxPDfgEhLzTdTtZ5LzWH
jtIru5ENwkyJagRzKiFopsuCTtXFYfjT41eNvEWhfF7VdEk0Sx8H+FfD5v4Y7i1u/wC0L/ztJF0i
i4gu4jbFGYZdAzENhTGy7z6J4u/Zv0fxbqmuSjxH4i0bR/ESxL4h0DS7iBLLWNkaxHzS8LzRF4kS
JzbyRF0UA5xmtnUvgf4f1LSPiHppmvba08b2gsr9Ld41+zxi0FoBbjZhcRqD824Z7Y4oA+WviD40
+Jenw/G69tfFcTC01TwjFpVnB9qtGtzPPZHy/tH2iQrGySOku2PLl2buUPoPjP8AaC+Jfw5bxt4f
v4/C3iHxRo1z4bexvbSwubGzng1S9a1MckLXMrK6GKUhxIQQyHZwQfR9f/Zl8P8AiG+8QzTa1rkF
rrp0qW8sIJLfyTNp8sMlvMpaEuGIgRGG/YVJwob5he8Zfs8+HPG/ibW9cvr3VIrvVv7F89LeWNY1
/sy7kurfaDGSNzyMHyTlQAu080AeTal8dfi14QuPFsmtTeDdQ0/wd4n0nRb57HSLqCTVYb42WGhD
Xji1eIXnO4ziQjpHjn6qrzTxL8AfD3iq28XwXd5qcaeKNY0/W7wwyxgxzWf2XyljzGcIfscW4NuJ
3PgjIx6XQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU
UUAFFFFABRRRQAUUUUAeQftZ6udI+AXicq22W5WG1Qeu+ZAw/wC+d35V+cFfdX7eGrG1+Fuj2CNh
7zVkZh6okUhP/jxSvhWvKzKWlOHq/v0/Q/n/AMQ63Pj6VH+WN/vf/ACiiivEPyo6L4deEX8eePNA
8PIGI1C8jhkK9VizmRvwQMfwr9WYYUt4UiiRY40UKqqMAADAAr4P/YZ8OJqnxav9Ulj3ppemu0bf
3JZGVAf++PNH419519Thoezw8F3u/v8A+Akf0fwJg1hsqVZ71G38logooorc/RgooooAKKKKACii
igAooooAKKKKACiiigAooooAKKKKAGySLFGzuwRFGWZjgAepp1Q3drDf2s1tcxLPbzI0ckUgyrqR
ggjuCDX5Hfs++C/jj+z7+0dr+i3HjnxR4S+BfhfxKdKvtWugLzT0hf57ZfLn3LEskbQq86rti81C
xHBoA/XeikVgygg5B5BFLQAUUUUAFZPizw+virw5f6Ubqewa5j2x3dq22WCQHKSKfVWCtg8HGDxW
tRSaUk0zSnUlSnGpB2ad16oytB1WO9hlspL+3vtV07y7fUTbqUCzmNHPyEkqGDqwGTww5Natcj4u
utK8AtfeM5bCV3aO3ttRuYHIEdqsh/fOucFYhI7Fsbgu7sMV1oIYAjkVEX9l7r8uh0V6atGtBPll
3t8SS5krdE3p5NC0UUVocYUUUUAeVfBv/kovx2/7HO2/9R7Rq+Qv2lfiRoniLx/4xsNDsry01GTU
1s9buJrjfHcfY1McKxrj5VyzFh3ZFNfWfwv1KDR/GX7QN/dP5dta+LYZ5W9EXw5o7MfyBr847vWo
/FGrarrsdqbMatfT3xgaQyFDJIzY3Hk9etaTqvD4SrVW7tFfPX8l99j4rjHMJZfk1XkvzVGoJ9r3
b/BMZRRRXxZ/L4V03gDw7qHiDUtVm0y5hsbvR9HvtYjvLlisVvLBAzQSOQCQom8nPB4zwelczXsH
gr4Y6d4n/Z68Ytq/ie18Hf8ACT6tp2hWWoXcTyeZ5VxHdSQoq8sZRHt+iN6GvZyml7TEpvZfrovz
v8j7jgzAfX85pKS92HvP5bfjY+1f2cfA1v8ADn4JeEtCttTj1qGK088alCpVbrzWaXzQDz83mZ5r
0mqWiaVDoOi2Gm24xb2dvHbx8Y+VFCj9BV2vcqzdSpKbd7ts/p+UuaTl3CsTxlNrkXh26Xw5BDNr
Uu2G3a4YCKAswUzOCRuWMEuVHLbdo65q7rmuWPhrR73VdSuFtbCziaaeZ+iqoyeByT7DkngVl6H4
bhh8Ran4ke5nu7rUo4Y4VnQoLS3RciJUPIy7O7EjcSwB4VQOaTv7i/4bzOvDxVP/AGia0WyabUmm
vde3R3eu3qbtvG0MEaSSGaRVAeUgAuQMFiBxz7VLRRWhxt3dwppkQSLGWUOwLBc8kDGTj8R+YrwX
9tDUvF0fwjbSfh14wu/C/wAQ9VuVt9EtdPtop59UkwS8A3gmJAuXacFfKC7mbGQfnn/gld8JfHmm
XXxO+IHxVk1q48bT6gPDqt4gnkmuoo4MSTfM5JKO7xgEHB8rI45oEfoFRRRQAUUUUAFFFFABRRRQ
AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB
RRRQAUUUUAfGv7f2reZqngvS1bHlQ3V06567jGqn/wAcf86+S69//bd1Yaj8bBbBsjT9Lt7cr6Mz
PIf0kWvAK8PMpfvlHsl+Ov6n8w8Z1vbZ1WX8tl+AUUUV5Z8QfaP7Aeh+T4Z8Xa0R/wAfV7DZhj/0
yjLnH/f4flX1bXi37H2h/wBi/AfQ5GXbLfy3F44x/elZVP8A3wi17TX2Uo8lodkl9ysf13kuH+q5
bh6PaK/IKKKKk9oKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqC+sbbU7K4s7y3iu7S
4jaGa3nQPHIjDDKyngggkEHgg1PRQB4PZ3l1+y3fQabqU8158HbmRYbDU53LyeFpGOEtrhzy1kSQ
scp5hJCOdm1l93Vgygg5B5BFQ31jbanZXFneW8V3aXEbQzW86B45EYYZWU8EEEgg8EGvDrO8uv2W
76DTdSnmvPg7cyLDYanO5eTwtIxwltcOeWsiSFjlPMJIRzs2soB7xRSKwZQQcg8giloAKKKKAEZQ
ykEZB4INYXh2bXRqWt2usQRtaxXPmadfRbQJrdxkIy5yHjOVJwAw2EclgN6sHxb4bn8Qx6ZLZ6hJ
pd/p19HeQzqpdGAyskbpkbleNpFxngsGHKis53+JdPxOvDyg26VSyUurTfL56a+T30b0bSN6iqWk
axZa9p6XunXMd3aOzossZyNysUYfUMrAjsQau1aaaujmlGUJOMlZoKKKKZJ8weL/ABJF4T8FftYa
hMhdDr6WoUNt+abw7o0K8/WQV8M2MSw2cKIuxVQYXOccV9TftGeIoNI8G/HjTJoDcf258R9MsAok
KbMaBo85bjqP3OMf7QPavmCuXMpcuFpQ7uT+5JL9T8Z8R69oYXDq+vNJ66dEtL77629OoUUUV8yf
iAjNtUk9q+zdQ+FPhZrX9nv4f6z4lOjeJdNv/wDhKIdDNnJKNSkjQtcKzgYjKmdgCxGQWwDg4+bv
gZ4N/wCE++LXhjRnj8y2e7We5XGQYYv3jg/ULt/4EK+xf7P8J+Ov2zDfw6lMPFvgfQVtp7B7VjG0
dzuZXSXftBVZQCuwE+YvJAwPrMph7Ol7S9m7v7k7fjc/fPDjA+zoVcdLeTsvRf8ABPfqKK57xk1/
qWl3ejaDqtrpuvXESlJZWBkt4WcLJOic5ZVLbcjbvCgnGaqUuVXP1+jT9tUUL2T6vZebt0RW+0N4
u8RappN9oSyaFpjW7rdXyEefeKyzKYkIwyx4jPmdN5wPumuqqK1g+y20UIeSURoE3ytudsDGSe59
6lpRjbV7lVqim1GCtFdNd7JN69Xa7+7oFcd8S/iXZ/DnTLXNrNrOvalL9l0jQrIj7TqNxjOxM8Kq
j5nkbCxqCzHAo+JfxLs/hzplrm1m1nXtSl+y6RoVkR9p1G4xnYmeFVR8zyNhY1BZjgVl/DT4aXuj
andeLvF11DrPj3UovKuLqAH7Np1vncLKzDcrCpwWY4aVhvfoqpZzh8NPhpe6Nqd14u8XXUOs+PdS
i8q4uoAfs2nW+dwsrMNysKnBZjhpWG9+iqnotFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR
QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfmV+0
jq41z46+M7kNu2Xv2X6eSixY/wDHK82rU8Vav/wkHinWtVzu+3X091u9d8jNn9ay6+dx0ubEz8nb
7tD+Q86rfWMyxFXvKX5hSO21GPoKWt3wHof/AAlHjrw5o5Tet/qNvbOP9lpFDH6YzWWGgqleEHs2
jjwNF4nFUqK+1JL72fp78NdB/wCEW+HfhnSCu17HTbeB+MfMsahj+Jya6SiivqZScm5Pqf2NGKik
l0CiiipKCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACoL6xttTsrizvLeK7tLi
NoZredA8ciMMMrKeCCCQQeCDU9FAHg9neXX7Ld9BpupTzXnwduZFhsNTncvJ4WkY4S2uHPLWRJCx
ynmEkI52bWX3dWDKCDkHkEVDfWNtqdlcWd5bxXdpcRtDNbzoHjkRhhlZTwQQSCDwQa8Os7y6/Zbv
oNN1Kea8+DtzIsNhqc7l5PC0jHCW1w55ayJIWOU8wkhHOzaygHvFFIrBlBByDyCKWgAooooA4+a7
0n4e69Z2kVhJa23ibUJnku1cmFL1kUhWUn5PNCPyMAuOfmk57CmSKZI2CttbHDYzg+tY3gu41ufw
3ajxHbxwa1EWhuGhI8ucoxUTIATtWQAOFPK7sHpWUfdly9PyO6q/b0lVb95WTu7uV72aT6JJJ/Lu
blFFFanCfnD+1H4ltW+Jnj3w0bXzbpvHC6kZ/MI8pV8OaKijb0O4s3J6bPevH69B/aahih/ah+JS
G1HnvfWt19q3nLI+lafEI9vTgwMc9TvI7CvPq87OHadKn2ivxbl+TR/O/iFX9pm8aWvuQit+rvK/
lo12CiiivAPzI+oP2CdBF3468TayU3Cx0+O2DH+FppN3HviE/nXrv7O8mjeNPi18ZPHljKq382tH
w7cWa2xQxGwLW/mGXAEplEaMMZ2qqjJ4xgfsN6aui/CvxLr0sTE3F+4AQZZ44YlIx6/M8grq/wBj
Gz+0fBK08UzX/wDaGqeMLuXxBqT/AGVrcRXkoVZ4VViSVSSN1DdwMgc19zRXssO1e3uxW3f3nr02
f9XP6z4Ww/1XJaMdm4p/+BO5694s8UWPgvw7e6zqBf7Napny4l3SSuSFSNF/id2KqqjqWAqLQ/Dt
pZ6pqGvC3mi1TVlhNx9pcM8SImEgGCQFUlzgEjc7nJzUVjLrWoeKtVS9soLbw9arFHZ+YA8t1Nw7
zDBwiLlUAI3FlY8Dbnoa4V7z5nsvz11PsZy+r0/ZRfvSXvNO6cXytR9U1d6vWy0aYVx3xL+Jdn8O
dMtc2s2s69qUv2XSNCsiPtOo3GM7EzwqqPmeRsLGoLMcCj4l/Euz+HOmWubWbWde1KX7LpGhWRH2
nUbjGdiZ4VVHzPI2FjUFmOBWX8NPhpe6Nqd14u8XXUOs+PdSi8q4uoAfs2nW+dwsrMNysKnBZjhp
WG9+iqmpwB8NPhpe6Nqd14u8XXUOs+PdSi8q4uoAfs2nW+dwsrMNysKnBZjhpWG9+iqnotFFABRR
RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFbUtRttH0+6v7yZ
beztYmnmmc4VEUFmY+wAJr83PDP7S/7Uv7cHirxDd/AObQfhv8PNFuWtYdZ1yBJWu3GCquZIZj5h
Uh9kcYCBgGYkgn73+N3h2+8XfBnx5oWl7v7S1PQb6ztdn3vNkt3RMe+4ivjH/gjp8S/Dt18BdS8A
fbIbPxjo+r3VzdaVMwS4khfZiYIeWAIKH+6VGcZXIBc+Af7Xvxd+HP7R1j8BP2jLLTbjW9WjD6N4
q0tFijvGYMYwwVVRkcoyKyohV12spzlfrXRfj94C8RfGHW/hZp+vfaPHmi2ovb/SfsdwvkwkRkN5
rRiJv9dHwrk/N04OPgr9rrxPpnxm/wCCknwA8K+DbyPVtW8L3sM2rz2LCRbfZcieSJ2U9UjhYsM8
b8dciuj+Eeq2+n/8Fjvi1bzSxxyX3hxYIVkkCl3ENhJtUH7x2oxwOwJ7UAfYd1+058NLP4o698Op
vEmzxloWnvquo6b9guT5FqsSytJ5gj8tsI6narFucYzkV8ufs6f8FNdB+Mv7S/ijwhqup2WleGLm
5i0zwWlvY3Ly6tKZnXzZHMeYyyBCFcRhd2DkgmuF+GOsaL46/wCCw/xLNpNaazpT+HpLCfaVmhkZ
LW0imjPVWAZWRh6gg96p/wDBP/4Z+D5v23v2kY5PCmiSR+HNbdtERtOhI0sre3CqbYbf3OAqgbMY
AHpQB9aax/wUD/Z+8P8A/CQLqPxHs7ObQb9tMvreaxuxMtwrMrJHH5O+YKUOWjDKvGSNwz6Z8Kvj
h4E+N/hN/EvgbxLZ+ItHjJWWa23K8LAZ2yRMA8bY52soOO1fmt+wT8L/AIXfEz9r79oiHx5ouieJ
Nbtdaum0jS9cijuI2ja8uftMiQSAq7Lth+bBKhuMZNdT+xRY6R4P/b8/aJ8M/Dpox8Nk0qR/JsZP
MtY7hJIQqKc4wjyXaqOwBA4FAH318Gfj14E/aD8M3viDwBrv9v6RZ3jWE9x9jnttk6ojsm2aNGOF
kQ5Axz1615d4l/b6+Edv8DfF/wASfDniRdd07QpG09FfT7yBZtRMReC2O6EMA52jft2jPJFfOv8A
wSB8aaP4b/Zl+Jc+qajaafbaT4iuL+8muLhEEMLWsGHfJG1f3bYY8HB9K8l/YT0HRvF37Av7S41X
S7LVreB9Qv7ZL62SYRTJppaKVQwO11PKsOQehoA+wf2BP21bL9qjwhd2ut6naD4i28lxe3ui2NlN
FDZ2fnbIdsjLsfgr/Gzc847fWlfD3/BIzwX4fsf2VNH8TW+haZb+JL27vra61iKzjW8niW4O2N5g
u9lGBhScDAr7hoAKKKKACiiigArnviJrH/CPeAfEuqZ2my0y5uAfdImYfyroaiurWG9tpbe4iSe3
mQxyRSKGV1IwVIPUEdqqLSabJkm00j8hUGEUdOKWvcf2mv2epvhHrZ1fSInm8I30mIjyxspDz5Ln
+7/dY9uDyMnw6vmsXRnSqty1vqn3/rqfyNnGW4nK8ZOhiVre6fRp9UFew/sk6H/bnx68PFl3w2Kz
3kg/3YmCn/vtkrx6vqT9gbQ/tPjTxTrJX/jzsIrQN2zLJu/9o1tl0b1+bsn+VvzZ6/COH+sZ1QXS
Lb+5f5n21RRRXun9SBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA
FQX1jbanZXFneW8V3aXEbQzW86B45EYYZWU8EEEgg8EGp6KAPB7O8uv2W76DTdSnmvPg7cyLDYan
O5eTwtIxwltcOeWsiSFjlPMJIRzs2svu6sGUEHIPIIqG+sbbU7K4s7y3iu7S4jaGa3nQPHIjDDKy
ngggkEHgg14dZ3l1+y3fQabqU8158HbmRYbDU53LyeFpGOEtrhzy1kSQscp5hJCOdm1lAPeKKRWD
KCDkHkEUtABXLeJNNTTddtfFz6s2m2emWlwmpROpeKe1278kZ+V43UMGAJ2l1x8wI6mmuiyIyOoZ
WGCrDII9KiUeZWOihWdGfMtndPbZ6PdPps7aPVaoSGaO5hjmhkWWKRQ6SIQVZSMggjqKfXI+Hb7T
PCuuW/gW0sJdOt7bTludNLSF45oVfZJGhJJBiLRZU9FlTHHA3PEmtReG/Duq6vP/AKjT7WW6kz/d
RCx/QU6bdTRb7fMdei6U7K9nrG/VPZ6Nr1V3Z3W6Py7+L/iSLxj8bviDrUMXlQzas1vGA5YFIEWA
MCf73ll8dt5HQCuXqW81i38R6heava6ZDo8N/M1yLG3ZmjiLHJCk8kZ9fWoq8nN5J46ol0dv/AUl
+h/JnFdf6xneKmukrf8AgPu/oFFFG1pPkRS7t8qqOpJ4Ary6cHUnGC6ux8zSpurUjTW7aX3n27ps
d/4B/YNvp9Ouv7M1K40S4nS+x80BuXbEwB6lUkBA7lRXpPgzwrpll8KdH+G/h/xHNaTx6PbyteR2
xS4+ySP88mM/unkHmhSTlTlgDsNef/taeGbCH4C+E/BE+q3FhFcajp+mw2dhHvudRaKMmK2jGQBu
kjiyTwAD7V9A+H9BtdJWe8TT4LDUb9YpL3yHMgLpGqBQ5AyqqoUcAcZwCTX2leSlB04/abbXlsre
e63P7dwNL6jhIVdVy6R2a5o8u6fRJvpq7I0rW1isbWG2gXZDCixouScKBgDJ9q5P4l/Euz+HOmWu
bWbWde1KX7LpGhWRH2nUbjGdiZ4VVHzPI2FjUFmOBR8S/iXZ/DnTLXNrNrOvalL9l0jQrIj7TqNx
jOxM8Kqj5nkbCxqCzHArL+Gnw0vdG1O68XeLrqHWfHupReVcXUAP2bTrfO4WVmG5WFTgsxw0rDe/
RVTnONtt3YfDT4aXujandeLvF11DrPj3UovKuLqAH7Np1vncLKzDcrCpwWY4aVhvfoqp6LRRQIKK
KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvkz46/8A
BMT4JfHjxZc+Jb2y1bwrrV5I017ceGbqO3W7kJyXeOSORAxOSWVVLEknJOa+s6KAPB/2bf2KPhZ+
yutxceDdInn1y4j8mfXtWmFxevHkHYGCqqKSBkIq5wM5wMcv+0h/wTq+Ev7T3jaLxd4kXWdG8QeW
kNzd6DdRwG9VBhPOWSKQEhcLuADYABOAMfUFFAHzX8E/+Cf/AMLf2e/ixH4+8Ff21p9+mmHSxp0t
2ktoUYLvlO6PzDIxTJJkxknAAwBn6t/wTm+FGpftFQfGaKbX9N8SR6pHrL2FndxCwlu1beZGRomf
5m+ZgrgE5wBmvqSigD8gf2Wf2SfAH7Wfxh/ag0nxtBfRS6b4qEthqelXAhurUvd33mBSyshDhFBD
I3QEYIBr9Hf2bf2U/h/+yr4Vu9F8D2E4e+dZL/VNRlE15eMoITzHCqMKC2FVVUFmIGWJPsNFAHxj
q3/BJX4Bax8RrjxVLZa5Db3FwbmTw7b36x6aWLbioUR+aqkn7qyAAcAAcV6z8Bv2NfAH7PngLxh4
N0R9U1jw94qnll1G01qaKQbZIvKeJPKjjwhTjByfevdaKAPmv9mf9gX4cfspeONZ8UeDdQ8RXN7q
lo1k8GrXcM0MMRkWTbGEhRuqKMszHA/GvpSiigAooooAKKKKACiiigDP8QeH9P8AFWi3mkatax3u
nXkZingkHDKf5EdQRyCARzX5vfHr4I6h8FPFRt3Ml1oF2WfT9QYfeXvG56CRe/qMEdwP0xqnqWj2
GtRRR6hY219HFIs0aXMSyBJB0cBgcMMnB681M4Qqw9nUWn4p+X6/8MfN55keHzzD+yq6SW0uq/4B
+anw6/Z78dfE7yptK0Z7bTpOmpajmC3x6qSNzj/cBr7h/Z7+Bq/A/wAOX1pJqQ1XUNQmWa4mSHy0
XauFRRkkgZPJ656CvVqKVOnTopqlG1+u7/r0SOfJ+GcBkr9pQTc7W5nv/kgoooqz6wKKKKACiiig
AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKgvrG21OyuLO8t4ru0uI2h
mt50DxyIwwysp4IIJBB4INT0UAeD2d5dfst30Gm6lPNefB25kWGw1Ody8nhaRjhLa4c8tZEkLHKe
YSQjnZtZfd1YMoIOQeQRUN9Y22p2VxZ3lvFd2lxG0M1vOgeORGGGVlPBBBIIPBBrw6zvLr9lu+g0
3Up5rz4O3Miw2GpzuXk8LSMcJbXDnlrIkhY5TzCSEc7NrKAe8UUisGUEHIPIIpaAMjxZHrEnh2/P
h+SCPWlj32n2pcxPIpDBH9FbG0kcgNkciuD/AGgPHy+CvgNruvajokd40tpFBLol5JlZDO6RNA7I
eeJGB2kjg9RXqdfLn7YGqf8ACB6S0UVtb67F4yukgGk36M4t7mKBwLqAhuJCRbjZgglAerHPRhY8
2Jg3qr6620WrPQw/LUj7NrWPvKyd5bXjdeSbV+t+58RxlWUFIlgQ8rFH91AegHsKWkU5UYOeOtUN
c1+x8OWYutQmMMTSLEgWNpHd2OFVUUFmY+gBNfIYiTq15ye7b/M/ifESqYrFTkk3KUm7dbtmhXYf
B7RR4i+K3hHT2x5UmpwNLn/nmjh3/wDHVavPtB8Raf4ms3utOn8+JJGhkDRtG8cinDI6MAysPQgG
vaf2WvAtp8Svi5/ZV3NcxWtpp811dG1cIWjJWJoi2DgOshU4wdrHBBwa1wd44iPdXfzSbX5H0nC+
WVMZndChUi0oSUp6fDFNXbXrZdLtpbs+kfiLpOi/EH9q/wCHVlrniHbeaLBJregaLp0PmpLHtUtd
XMpxs3PEyIqhhiIncC2K9k+JfxLs/hzplrm1m1nXtSl+y6RoVkR9p1G4xnYmeFVR8zyNhY1BZjgV
4JrXj/4d6N+1B4j1bSrTWNX+I3h/SbXwhaeHLSGNYL2SRTdwpbtn5QiTSeY7bUjUOT93n2f4afDS
90bU7rxd4uuodZ8e6lF5VxdQA/ZtOt87hZWYblYVOCzHDSsN79FVPqai5YQjfpf723+Vj+r8RU9o
42Vkkltb+m92+rD4afDS90bU7rxd4uuodZ8e6lF5VxdQA/ZtOt87hZWYblYVOCzHDSsN79FVPRaK
KwOQKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii
igAooooAKKKKACiiigAooooAKKKKACiiigAooriPid8ZvCXwh0v7X4k1WO2kZd0NnHh7ib/cT0zx
uOFHcirhCVSShBXbInONOLnN2SO3rxL41ftaeC/g6s1n5/8Ab3iBcgabZOMRt6SychPoMt04xzXy
L8bv23vFXxF+0aZ4c3+GNCbKHyH/ANJmX/bkHQEfwrjqQS1fNmZLqYbmLu5xljX6DlnCdSolVxz5
Y9uvz7H53mnF1Om3RwC5pd+ny7n6b/sn/EnxZ8ao/EfjLxDOINN85bDTtNt12QQ7RvkbHVmIaP5i
T/EBjpX0HXnH7O3gcfDz4M+F9IaPy7n7ItzcKfvCWX94wPuu7b/wGvR6+Hxkqc8RN0laN9PTofd4
ONSGHgqrvK2r8+oUUUVxnYFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB
RRRQAUUUUAFFFFABRRRQAUUUUAFQX1jbanZXFneW8V3aXEbQzW86B45EYYZWU8EEEgg8EGp6KAPB
7O8uv2W76DTdSnmvPg7cyLDYanO5eTwtIxwltcOeWsiSFjlPMJIRzs2svu6sGUEHIPIIqG+sbbU7
K4s7y3iu7S4jaGa3nQPHIjDDKyngggkEHgg14dZ3l1+y3fQabqU8158HbmRYbDU53LyeFpGOEtrh
zy1kSQscp5hJCOdm1lAPeK8W8fXWl+OPj5ofw/1Xw9p+r2kXh+61eS9nVxc2Yd/IHlOrDYW9R8ww
CCCBXtCsGUEHIPIIrxvx3p3xR0j4iXXiLwj4X8D6zZvapaLNdyTW+rPGMM0bS42bA+4gfTvXXhox
lKUZW1TWrstdDpw8pQnzwdpLZ3tZ+p8Z/H7wzaaL8RPiFfpcaTpEVn4lj06Lw/HcqblYpLC1nS4C
5yRLJJMxUD5AVHrj56+L1jpGpeG7WPVdYm0BkvI5bPVI1YrbXAzsZyBtVeSMsVHPUHFe9/FL4SeM
G/aa8TeJdL8P654xsdF8Q2DX7QRfbpfMFlZXTwkjBfasyoo242CMZ4OPGP2h/j58O/AvjjxBB4Xh
vJoIZWMWlHBe3OQCjvyEGc4U5YAYOT1+bnTxFSpKdaHLJbf3l3urq60v+Ou/xPiJwdleArZfm3Dl
Z1atdN1IR05ZR5b2TT5Vrq53TT69eb+HHjrUb7SbqDWLyz1W7huGgtNSs12Q3qDAD/3Rznkccce/
2Z+yT4rs/hzD4n1uWxk1jxBqJt9K0XRbAAXOp3JDyOiZ4VFCRs8jHbGgLMQBz8//AAv+G2jfFjwZ
pnjy+163Da04h0rwfYSpJrF3MGMYRkJCwRkozGZztVPnPGM/d3wu+CNn+y78KfE3i6a1j13xva6P
c3cz26NKsaxxGQWdsMBihMahmwGlYAkKAiJrgMNiKVSdXEJK+kV1tfftqvP5I96rwzkOXvAYzKOa
NaVJPERa91VJQheMHp7sZKV0o8vM7xk1yqOT+xNZaN44h8a/FSazhbxprOtXlhqd1BCoto/JlIC2
j43mJ4xASzYLlASPlGPqKvIf2UdN0+0+Bfh2/wBPW8X+2VfVbn7cqLIbiZi0vC8Bd2dvJO3bnmvX
q93E/wAWS7aa+Wn6HqVPja7foFFFQXF9bWs1vFPcRQy3LmOBJHCtK4UsVUH7x2qxwOyk9q5jInoo
ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii
gAooooAKKKKACiiigAoorzT4pftE+BfhHDKut6zHJqCjjTLIiW5Jx0Kg4T/gZFa06U60lCnFtvsZ
VKsKMXOpJJLuel1xfxG+Mng/4U2Zn8S63b2MhXclqp33En+7GOce5wPU18OfFr9vjxb4u86y8KQr
4W01sr5yHzLtx/10I+T1+UAj+8a+Y9T1a91q8lu7+6mvLmVi8k07l2Zj1JJ6mvucv4SxFe08W+Rd
t3/wD4PMeMMNh7wwi55d9l/wT65+LP8AwUI1nVvOsfAunLotqflGoXgWW5Yeqryif+PexFfJviDx
FqfirVJ9R1e+uNRvp23yT3Mhd2PuSc1m0V+kYHKcJly/cQ179fvPzLMM4xmZP9/PTstF9wV6N+zz
4E/4WN8YvDOiPH5ltJdLLcqRkGFPnkH4qrfjXEaHoOoeJNUt9O0uzmv724cJFBbxl3dj2AHJr9DP
2Qf2V9R+D91N4p8SzRjW7q1MEWnx4b7KrEElm6b+MYGQATyc4Hn59mdLA4WdPm/eSVkuuvU9Hh7K
q2OxcKnL+7i7t9NOh9R0UUV+En76FFFFABRRRQB84/tFft+/B79m03VhrfiAa34nhyp8O6FtubpX
H8MpyEh7ZEjBsHIU12/7M3x5sf2ivhPpPjG3OmWt1fB5ZtJsNRS9ewUuwjjmZcYl2BWZSo2kkdsn
83P+Cmn7FPiXxN+1F4b1n4eaI2p3HxEWSNrWJkiRdQt4i0hZ2IRA8KB8sRlklOa+G/EXgb4sfsw+
LYJ9U0zxN8OteibFvfL5tozY5/dToQHHHVGI4oA/peor8PPgr/wV5+Mvw4+z2fi1NP8AiNpMeFP9
or9mvQo7C4jGCfeRHJ9a++fgp/wVa+B3xW8i01rU7j4eazJhTb+IUC2xbvtuUzGFHrJ5f0oA+yqK
p6PrOn+INNg1HS7621LT7hd8N1ZzLLFIvqrqSCPoauUAFFFFABRRRQAUUUUAFFFFABRRRQAUVl6V
4p0bXNS1PT9N1Wy1C+0uRYb+3tbhJHtZGGQkoUkoxHO04OOa1KACiiigAooooAKKKKACiiigAooo
oAKKKKACoL6xttTsrizvLeK7tLiNoZredA8ciMMMrKeCCCQQeCDU9RXV1DY2s1zczR29tCjSSzSs
FRFAyWYngAAZJNAHhlneXX7Ld9BpupTzXnwduZFhsNTncvJ4WkY4S2uHPLWRJCxynmEkI52bWXuf
jJ8ePAvwC8KN4h8ceILXRrFsrbxsd892+P8AVwRLlpG5HCjjOTgc14F46/a41f44apqnw9/Z28MW
nxDuSGstW8Y6uhHhnTVYFWVnx/pTYP3EBVgcjeMiuN+GH7Luk/slePNF8Y/FK5HxMtntrewtvG+p
q5TwnOp2pELd3ZIbNiVVJ1AMLDa21HyADI+HGlfFv9sLxh8U57DVdU+CXwo1PxJDPqdp5Ri8T3rf
2Rpsaw7j8ttG8EcEu4ZP7/b84zj6AvPhL8G/2b/hdH4N0f4c6XrQ1x1s7Xw01nFd3XiC5UFlEzTA
+YF5dpZTsiUFjtAApui/Eyy+HfjH41sLWbWtd1Pxxb2uj6HYkfadRuP+Ec0Y7EzwqKPmeRsKigsx
wK9C+Gnw0vdG1O68XeLrqHWfHupReVcXUAP2bTrfO4WVmG5WFTgsxw0rDe/RVQA4fwn+yL4PvNPu
b/x54f0fV/EeoiLz4tNhNtY6dFGgSG0tETaVijQBd5G98ZOBtRIP2h/2b7rx1a6lq3hXXPE2meId
WurG0u4NO1jyLRrNpoYLl3if5SqWvmtsHLFcAMTg/Qlcj4y0HVdc8UeB5bDVhp1jpmqS6hqNss7x
yXsIs7iFIgF4ZRNPDIQ3H7tfYV1QxVenblm9PP8ArsaqrOOzNrwv4bsfB/hvS9C0yNotO022jtLd
GYsRGihVye5wOT3q9d3cFhazXN1NHbW0KGSWaZgqIoGSzE8AAdzXNN8TNEk8fL4NtWutQ1tI/NvF
s7V5YNPUpvT7TMBsiZxjajHe24ELtyRS0HwTrOo2uuR+P9VsPFdtqjKq6IumRpptpEjMVVVffJK5
ypd5HIJRSqR8g8zbk7vczbvqytqnjPWvHPhPS9R+FdxoOrW2pyug1/UJpHtLaJWZTNHFGAbnLKQq
h41YfN5mMZ3G+HXh2bxtH4wudLhu/E0Vt9lh1G4LStbR87lgVyRCGz83lgFsDcTgV0aKsaqqqFVR
gKowAPSnUhBRRRQAUUUUAFFFFABRRRQAUUUUAFFZem+KdG1nVtU0uw1WyvdS0uRYr+zt7hHmtGZA
6rKgOUJVlYZAyCDWpQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVxGg/Gbw
n4o8f3Xg/R9TTU9WtLV7u4a2w0MYV0QpvzgvlxwucYOcEYrt6uUJQdpKxEZxmrxdwoooqCwrxr4r
ftY/D/4VrLBPqY1rVkyP7P0siVg3o752rz1GSw9DXE/tsftAD4b+ET4U0e42+ItYiIleM/NbWxyC
fZn5Ueg3Hg7a/N53aRizEsx7mvuMj4d/tGH1jENqHTu/+AfCZ9xJ/Zk/q+HipT632X/BPoj4tftv
eO/iJ51npUw8K6Q/Hk6e585h/tTfeP8AwHaD3FfPVxcS3UrSTSNLIxyWY5JNRUV+q4PL8NgY8uHg
l+f3n5JjMyxWYS5sRNvy6fcFFFT2dlcajdR29rC9xPIwVI41LMxJwAAPeu+UlFXk7I8+MXNqMVds
gr1b4Jfs4+K/jdqQGm2xs9IjcC41S4BEMfqB/ebH8I55GcDmvf8A9nv9hGa8+za98RVe1g4ki0SN
isr9x5zDlB/sj5ueSpGD9vaTpNloOm2+n6baQ2Njbrsit7eMIiL6ADgV+c5vxVGnejgdX/N0+Xc/
S8m4SlUtXzDRfy9fn/keefBf9nrwp8EdMWPSLUXWrOm241a4UGaTPUL/AHF/2R6DJJGa9Ooor8uq
1Z1pupUd2+rP1alShRgqdONkuiCiiisjUKKKKACiiigCOS3imeF5IkkeFt8bMoJRtpXK+hwzDI7E
jvVPXfD+l+KNLn0zWdNs9X024XbNZ30CTwyD0ZGBBH1FaFFAHxZ8av8Agk38Efij595oFnefDvV5
MsJdDfdaFj3a2kyoH+zGY+lfBHxq/wCCRvxp+Gnn3nhhLH4jaRHlg2kv5F4FHdreQ8n2jaQ1+5VF
AH80vhH4mfFv9mHxVNb6LrPiT4fazC4a402TzLbce3nW0g2uOOjqRxX2v8Ff+C03jLQfs9j8TvCd
l4qtVwrapozCyvMd2aM5ikPsvliv1W+I3wl8F/F3RzpfjTwtpXiaxwQsepWqSmPPdGI3I3+0pB96
+G/jV/wRl+HPiz7Re/DnxBqHga+bLLYXmb+x/wB0biJU+pd8elAH0N8Ff+CgfwN+OnkW+j+NLbRt
YlwBo/iLFhc7j0VS58uRvaN2r6Kznkciv5+PjV/wTb+O/wAFfPubjwm/ivR4sn+0/C7G9TaO7RAC
ZQB1LIB154rjvg3+2V8aP2epo7Twt411K20+3bY2iakftVmoB5QQy5EfTBKbW96AP6OaK/Lz4K/8
FrtNvPs9j8VfBMunynCvrHhl/NiJ9WtpW3KPUiRz6CvvP4P/ALT3ws+PVukngXxtpWuXDLvawWXy
bxB6tbyBZAODyVxx1oA9QooooAKKKKACvE/2rvgj41+Onw7k0PwR8TtT+HF/hvMayjXyr0Ef6uWR
QJkHUZjcDDHcr8Ae2UUAfn1+wH+xj8V/gfpPj7RfFHjTXvAk0upwy283hk6Xd2upp5ZBmD3dnO4I
PGD5Z9V6GvrD/hTfi7/ou3xA/wDAHw9/8qq9VooA8q/4U34u/wCi7fED/wAAfD3/AMqqP+FN+Lv+
i7fED/wB8Pf/ACqr1WigDyr/AIU34u/6Lt8QP/AHw9/8qqP+FN+Lv+i7fED/AMAfD3/yqr1WigDy
r/hTfi7/AKLt8QP/AAB8Pf8Ayqo/4U34u/6Lt8QP/AHw9/8AKqvVaKAPKv8AhTfi7/ou3xA/8AfD
3/yqo/4U34u/6Lt8QP8AwB8Pf/KqvVaKAPKv+FN+Lv8Aou3xA/8AAHw9/wDKqj/hTfi7/ou3xA/8
AfD3/wAqq9Vrz74rfGjSvhXHp9tJYajr2vaoXTTNF0m2aWe6ZMbsHG1VXcuSTwD0NaU6c6slCCu2
VGLm7RRlN8HPFqqSfjv4/AHJJsfD3/yqryzXtT8VR/EaPwT4Y+KXxT8V6zb3ESatLb6d4egtdMib
DFpJn0kKW2HcqD73TIPFdr8QvAdx8StM03XPiP4lu/BvgyOxil1LwjHdRxRm5JJdZ7tCDIn3QEGM
kZGDxXjfxl/b3tNJhm0b4bWvnOo8s61eoT0AAaNG5Y4A+aT05XvXs4LLp4qahRj7SXXpFer6/L72
ceMx+Dyyn7TFTXp/W/y+8u/tAeAfEXwy8PXHjW/+Oeu3Hjqzc/2PbSfZreGeESL+7+ypEUeTaAS2
wRlgNyYxjxr4L/A347ftt2Xi3Tv2jfGXjbwx4L0i8W3sNGs7Sx059SlyxZpGS2VZo4wI8ExsrM5K
ldhFcv8ABSx1n49fH7QE1+9uNXea7FzeS3LF8xR5dlOegKqVHYZAFfV2peOE/ZR+MmtaW8EuoeDP
FkiaxDawk+Zp1y7sk5QEYZWKhtoII46d+vOsLHARjRxFRc8Vfay1aXKrdt/vPHw3EVDFYSeNxLVO
lF2i312XTz2+dzvvCf7Nup+BPD9loXhz4weNND0ayTy7exsNL8OQwxL14VdJxycknuSSa5/4seGN
Z8GeH0tL34yfEHxJqetFtP07w1Dp/ht5dVlZTuiCtpO0RhcmR3+REDFjjr638S/iXZ/DnTLXNrNr
OvalL9l0jQrIj7TqNxjOxM8Kqj5nkbCxqCzHArL+Gnw0vdG1O68XeLrqHWfHupReVcXUAP2bTrfO
4WVmG5WFTgsxw0rDe/RVT5c+iPhT4E/BvxP+zx8TPHl/4o+I/iHS9Eg1Oz8OXfirRYtNuBpMx0vT
rhI7j7ZYylLQrcQW4miESD7LF5kaqU8v7aX4OeLWUEfHfx+QeQRY+Hv/AJVVkeB9W0DSPFHx9bxN
eadZ6PceM7W0l/tWSNIJfM8PaMgibedrb87dv8WcYOa5bS9e8Tfs0eNG0PUrCVPgKtxHb2HiDUZ1
ml0VpIwUgJV2YWIkYRrLMAYiCjfu9kgAOp8VfD/xT4T0G81R/jR8UNUNsqkWOk6PoFzdSszBVVI1
0nJyT1OFUZZiqgkcFH+zzr3xW8Q2t/r/AMbPiFoXiCy0V7W60a3l0SLU9Pgu50kAa4tLJUUSGyTI
UNkxECQrkN9AeAvhr4f+HcF6dGt5XvNRkE9/qd9cPdXl64BCtLPIS7gAkKudqg4UAcVS+H6+HtU8
SeNdf0aS5mvbnUhp2oyTjCCa0jEWyLj7gyfX5i/0oAwf+FN+Lv8Aou3xA/8AAHw9/wDKqj/hTfi7
/ou3xA/8AfD3/wAqq9VooA8q/wCFN+Lv+i7fED/wB8Pf/Kqj/hTfi7/ou3xA/wDAHw9/8qq9VooA
8q/4U34u/wCi7fED/wAAfD3/AMqqP+FN+Lv+i7fED/wB8Pf/ACqr1WigDyr/AIU34u/6Lt8QP/AH
w9/8qqP+FN+Lv+i7fED/AMAfD3/yqr1WigDyr/hTfi7/AKLt8QP/AAB8Pf8Ayqo/4U34u/6Lt8QP
/AHw9/8AKqvVaKAPKv8AhTfi7/ou3xA/8AfD3/yqo/4U34u/6Lt8QP8AwB8Pf/KqvVaKAPKv+FN+
Lv8Aou3xA/8AAHw9/wDKqj/hTfi7/ou3xA/8AfD3/wAqq9VooA/L7xJ/wT6+OXjX9tLxb440n4h6
n4T0WO4tfJ8cXksC6nfqLWBXCW9mkMbAFShDLGpCc7znP6XeGdLvNE8P6fYahq9zr99bwrHNqd5H
FHLcuBy7LEiICfRVArTooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiqupapZ6Lp899qF1
DY2UC75bi4kCRxr6sx4Ar48+O37fFrpv2jR/h3GLq5GUfWrmP5FPrFGev+84xx908GvQweAxGPqe
zw8bv8F6s8/G4/DZfT9piJ2X4v0R9LfFH4zeE/g/pJvfEmppbyMpaGyiw9xP/uJnpnjccKD1Ir4A
+O37Znir4qm50vSGbw54bfKG2t3/AHs6/wDTV+pB/ujA5wQcZrwzxJ4o1bxhq1xqes39xqV/O26S
e4kLsT9T+X0rKr9XyrhjD4O1XEe/P8F/mfkWbcVYjGXpYX3Ifi/8j6V/YE1I23x5WJnJa7sJ4ue+
AH/9kr9Ka/K/9jG//s/9ozwo5OFdp4j/AMDgkUfqwr9UK+K4shyZk2usV/kfc8I1HPLEn0k/8wrk
vip8SNM+E/gfUvEmqsPJtUxFDuw08p+5GvuT+QBPQV1bMsalmIVVGSxOABX5rftZfGLUvjp48Gje
HYri98OaSzR2q26lhcyZw02B1B6L/sgdCxFeLleA/tDEKnJ2gtW+yPczXH/2fhnUiuab0SXVnh3x
A8can8R/F2peIdXnM99fSmRj2UdAoHYAAADsABXO16Fo/wCz78R9eK/Y/BetMjdJHsZET/vorj9a
7jR/2Ivi1qxUyeH47CJv+WlzeQrj/gO/d+lftazHLcHBU1ViktNz8NeWZpjKjqujJuWr0/zPBaK+
sdH/AOCdPji6KtqOuaLYxnqqSyyOPwEeP1r0Lwl/wTj0ux1G2uPEHiyXUbZGDSWdpaeVv9vMLnA/
4D+VefV4nyymnafN6Jno0eFc0qtXhyrzaPkz4R/A/wAVfGbWlsdAsGaBSPPvpsrBAD3d8cewGSec
A4r9GPgT+y74V+CVrFdRxrq/iMriTVLhBlD3ES87B78scnnHA9Q8L+FdI8F6LBpOh6fBpmnQDCQW
64HuSepJ7k5J7mtavzPNs+xOZtwXu0+y/XufqGUcP4bK0p/FU7v9OwUUUV8wfUhRRRQAUUUUAFYP
h3x1oHi3VvEOmaRqlvf3/h+8Ww1OCFstbTmJJQjf8AkXkcZ3DqpAseLbrV7Hwvq9x4fsodS12O0l
aws7iURRTXAQ+Wjv/CpbGT2Ga/OT/gnp8E/j78Jf2lviNqvixbDUtG1C/ew8XSLqSvJ/aD20V/Dc
IuBvIF4qnHQTP3UUAfpjRRRQAUUUUAFFFFABRRRQAV5L8ZP2UfhN8fIZP+E28EaXqt664Gpxxm3v
V44xcRlZCB6Ekexr1qigD8sfjV/wRPhk8+9+FXjhoTyyaP4oTcvrhbmJcgdgDGfdq+Dfi7+yT8Zv
2dbo3nirwZq2l2ts29NbsB9otFI5DC4iJVD3AYq3tX9IFNdVkVlZQysMFWGQR6UAfgL8Ff8Agpp8
d/g35Fs3if8A4TPRo8D+z/FCm7O30WfImHHA+cqP7tfpV+x3/wAFMvD37U/jC08E3Pg7VPDni2a3
kuMwSLd2BSNNzsZfldM8AAoRlgN1d78av+CdvwL+OHn3Oo+DofDuszZJ1bw0RYzbj1ZkUGJyT3dG
PvXNfsY/8E99H/Y/8e+L/EVt4kk8UPq1rFZafJcWggms4N5eVGIYhyzLD8wC/c6UAfXVFFFABRRR
QAUUUUAFFFFABRRRQAUUUhYL1oAWsHxx430f4deF7/xBr1y1ppdkqtNIsbSMNzBVAVQSSWIA9zXm
Nr+0RB46vdXt/DVpdad4YtbW4jl8e6mqW9jbXQUhPLSbaZgG69OQOMHNfOsv7SHhD4J3mrXmh6nq
nxS8eakixX3iHWJXis/lYlVigB4RW6KMYzw+OK9rDZXXrz5OVuWnurf5vaPz18jHFYnDZfD2mMmo
+XV/1/SPomTWvFfx08CXk8D6x8H9J+1qw1G8WIXl5YbDvYKTm2YtjDE8DkZzXmPiL9qD4b/s6eE4
/CvgDzfFd/bmQiea5eaISO26SR5icuWY7iI8KTnla+Q/if8AtBeOPi3cMdd1qZrPduSwtz5dunPG
EHBI9Tk+9ec19/g+F3JL63K0b35I/q93/Vj81zPjZyTpZfCy7v8Ay/z+47z4pfG7xd8X9TN14h1W
WeJWJis4zsgh9kQcDjjPU9ya4KinwwvcSLHGpd2OAqivu6NCjhKfJSioxR+Y1sRXxlTnqycpM+1/
+CcngPfdeJvF80fEaLp1sxHdiHk/EBY/wc14xpXgO18RaH8TRH8NPB2ueJdU+J+sWuha99uMfib7
XHcrIq28X2Fw0cYG9me5jRVLlimA1fYnwpvLX9nL4AeE9On0641HxZreZLLw/aqFvNQvJRvEYB4Q
JGF8yRsLGqFmIxXls3wq+Hn7OepN4s1/TPGHif4qa7qkuo3Gn+ANU1ZYLWS5njkeBUjuI4xb+Z5Z
InOZjyEI2xr+D5jip4zMZ16ervp8tEf0Tk2EeBwdGjFapL73r+Z7R+zra2OvSa54r1zXU8T/ABEt
5n0bWLxoGgj0zyiC1naxOFMcIb5i5AMrAs2MKidnB8SB8RvC+r3PwwvtL1q+tbkWceoags40wvlf
MdJUTFyEUtxE20suwuhyV4H4GfDHxLP8RvFHxV8VJc+FL/xCFgj8H2c6m1WBFURz3WMmS5+8Mgqq
gn5dzGveLe3is7eKCCJIIIlCRxxqFVFAwAAOAAO1eXiIxjUaht8t+u2m+x7NRJSaR4H8DfAFpefE
T4pah4qjsfFHijQ/F8P2fWZbBIjHK/h3RRJJDHlhESFA4JIHGeTnY8N+JP8AhX11N8PfiGRcabfz
TxaPrmo/vbXVIJWZvsk7NkLMqsU2NxIqgrnkVp/Bv/kovx2/7HO2/wDUe0auw+JHhI+PPAeu+H1+
xiTULSS3jkvrYXEUTsMLIYzwxU/MPcCvPrRk/fh8S/Hy/rY9TLq9CLeGxS/dVGrvrFq9pJ2e13dW
akm1o7NeCfDn4raN8I7q/wBPstYbWvg9Z6k+kx6jM5ebwlcq+xba5Y8tYMceVOc+VkIx2bWT2v4N
aro/iT4baL4j0LSv7H03xFG2vJbscsxu2Nw0jH+85lLn/exXyr4d/ZP8XfswaH4s8X6T4ntfFkMe
jXS3PhWTRnlh1n922y3kXzejMQN2DgFuCCQfZNNurv8AZZurXS9Umku/g/cOsFhqUjF38LSMQFtp
2PJsSSFjlY5hyEc7NrLlhKlepSviIcsju4hweV4LGuGT4n29FpNO0k0+qd0uu1ulup73RSKwZQQc
g8gilrtPmQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo
ooAK8o+P37Q+h/APRbabUIJdQ1S+D/YrGEhd+3GWdv4Vyw7EnsODj1evy8/bW+IX/CdfHDVLeGTz
LHRVGmw4PG5CfM/HzC/PoBXv5HlyzLGKlP4Vqz57PcyeV4KVaHxPRepynxi/aK8YfGm/LaxfmDTF
YtBplrlII/8AgOfmP+0xJ5POOK8voor91w+Fo4SmqVCKij8DxWLr4yo6teTkwooorpOQ9J/Zv1E6
Z8dvA8oO0Nq1tETnHDyKp/Q1+utfjv8ABXTNS1T4q+Fo9Js5r29TUIZUihXLfK4Yn2AAJJPAAJPA
r9iK/IOMUvrlNp68v6n7PwW5fUZprTm/RDZI0mjeORFkjcFWVhkEHqCKZa2sFlCIreGOCIdEiUKo
/AVLRXwJ+ghRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXlXwb/wCSi/Hb/sc7b/1HtGr1WvKvg3/y
UX47f9jnbf8AqPaNQB6rRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFeC+KP2vPD+g
eJry2stE1PXPDGlXCWmteKbFN1lp8ruFCk4/ebT94r04xnNdFHD1cQ2qUb2/r/hu5pCnKo7RVz3q
iobO8g1C1huraaO4tpkWSKaJgyOrDIYEdQQQc1NXOZhRRRQAUVw/xT+L2i/CfTLWfUYb7Ub++lNv
p+l6XbNPc3kwGfLQAYBxz8xHHrXxP+1t+0d4j8Tf2Z4cjkvvCo+yk63oEFwjFZi7bY5J4+W/d7dy
cAE4I3KQPXwGWV8fUjCCsn19P69L9TnxWIo4Gj9YxUuWHf8AyW7PqX4xftSaD8K9cGgW+n3Ou68v
lvcQowt7e1ifkPJO/wAuSuSqjJJGOM18mfFb9pq0uPiZN4h03V9T8XyWF2Z9DgvM2enad/dYQRsG
ncAn55CvoyMK+ddd8Vav4mkifVNRur4wxLBF9omZ9kagBUGScKABgVk1+nZfwxQw6Uqzu7a26/Pp
8rebZ+XZjxtVknTy6HIv5nq36dEdh4++LXiz4mX32nxDrNxfbSTHCW2xR57JGuFX8AK4+iivsqNC
lh48lKKivI/OK+Iq4mbqVpOT8wopVUuwVQST0Ar6I+Dv7J9xr2it4y+IWpw+CPAtsgmmvdQlWBpI
+PmBfCopyPnbjkYDVyY7MMPl9P2leVvLq/Q68BluJzKp7PDxv3fRerPJvhp8J/Evxa15NK8OabJe
S8GSXGIoVz952PCj69egyeK+1vDfwh8C/si6Ba6zq9tJ45+I12j/ANl6TZRebcXMyruZbWHBOEHL
zMMIoz8ucGh4i/aBf4T694U8BfBL4cJq+n3Vzb+fe3SSwm+DqsphtwwVpZWhYMZ3bZEpDMCgOPUP
g7+y3pvhHxfN8R/GNw/in4pX+6SfVZ5nlisdwP8Ao9qGxiNAxUHA4yQqZK1+UZtneIx94Sfs6fSK
3fa/9elz9tyfhrDZUlUq+9U7/wCS6eu55L8D9F+JP7Rul+KvEfivS9Z+G9/r9n5Fn4rt7xY7+3t9
6slpZwFCbe3xks6uJJWCv5gO1YvpD4OfA3wt8DdDk0/w5BcPNcbDd6jfTtPdXTKCFMjn0yeBgcn1
Neg0V8lKs7OEFyxfTv69/wAvI+sc9LR0QUUUVzmZ5V8G/wDkovx2/wCxztv/AFHtGr1WvKvg3/yU
X47f9jnbf+o9o1eq0Act8QrjxHFY6NF4ZjzdT6zYpeTFUYQ2QnV7kkN/eiR48jJBkBGCMjor6xtt
TsrizvLeK7tLiNoZredA8ciMMMrKeCCCQQeCDXN+ItF1/UPH3hG9sb8Wvh7T1vJNTt1mZWuZGjVL
dSoGGUFpWOSMFUwD26ugDwezvLr9lu+g03Up5rz4O3Miw2GpzuXk8LSMcJbXDnlrIkhY5TzCSEc7
NrL7urBlBByDyCKhvrG21OyuLO8t4ru0uI2hmt50DxyIwwysp4IIJBB4INeHWd5dfst30Gm6lPNe
fB25kWGw1Ody8nhaRjhLa4c8tZEkLHKeYSQjnZtZQD3iikVgygg5B5BFLQAUUUUAFFFFABRRRQAU
UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBy/wAUPGkXw7+Huv8AiOUr/wAS+0eW
NX6NKfljU/Vyo/Gvxy1G+l1K/uLueRpZppGkd3OSxJzkn1r76/4KH/EL+yfBOi+EreXE+qTm6uVU
8+THwoPszEn6x1+flfrnB+D9nh54mS1k7L0X/BPx7jTGe0xEMLF6RV36v/gBRRRX6CfnAVpeHfDu
o+K9atNJ0q0lvb+6kEUMEK7mZj2xUGk6Td65qVvYWFvJdXlw6xxQxKWZ2JwAAOSSTX6Y/sr/ALMN
p8F9FTV9YijufF95H+8fhhZof+WaH+9/eYfQcZLfOZ1nFPKqWmtR7L9X5H0+R5LUzatrpTW7/ReZ
qfszfs26d8DPDonulivPFV5GPtl4BkRDr5UZ/u9Mn+Ij0AA9uoor8Mr16mJqOrVd5M/eqFCnhqca
NJWitgooorA3CiiigAooooAKKKKACiiigAooooAKKKKACvKvg3/yUX47f9jnbf8AqPaNXqteVfBv
/kovx2/7HO2/9R7RqAPVaKKKACiiigAooooAKKKKACiiigAooooAKKKKACqmratZaDptzqOo3cNj
YW0ZlnubhwkcaAZLMx4ArP8AGvjLS/h/4V1LxFrMrw6Zp8XnTvHG0jYyAAFAySSQPx5xXg/iDWtK
+K3gO08RfGLTJvB3hqHU/tmkaDJev5+pwhAEW6t1GXbd84ReRxnjJbro0Ode0npC+/X0S6v8uppG
Ktzz0idRrjeMPjdrmgzeFPEUegfC9oYdSbXNKl/0/UnDk+QoZcwqCo3bhznBz8yjK/aH+K3hfQ/A
vizwPonlXXiPV7G7tTb6dGhSzmnRwZ52xtDBm3lTlmPbnNeYfED9oTX/ABna/wBk+HYX8GeF0QRJ
Hb4S9mjAwFJXiFcYG1OePvY4rzC1tIbKERQRrGnXC9z6n1NfF5xxZhsIvYYVKcl2+Febkvifpp5r
Y+3yvhjFZhy1MR+6p/8Ak7+XT1fyjY9F/Zb+NXiLwL4dh0DxL4etVAuHjY6BvNiZhEsrmEMB5BaP
c5jYBGYOwYEvX154T8baL42tZZdJvUuHgIS4t2+Wa3Y9FkjPzLkDIyMMOQSCDXzp+ynZpr9r8S9B
luLi0juorXM1pKYpoxJHNGWRxyrDYMHscVy2t+D/APhWtmll418aw+EPF+nzSQ+GvFlnc7LnUrRQ
rbpk2soxlVZJgY5CvKkjeVgcPjcLhaVfBJ1qbjFunvON43bpX+KK6027pfC7LlPCzH6rGtWhXmqb
hKSUm7JrmaXN2e2vV7rqfXvibxNpvg/Qb/WtXuRaabYwtcXE21n2Rr1baoJOPYV5XpvjDxT8f/Cu
sL4ct9Y+GumvLCNO8RX1vG099CSfOMcDENECuNjnOd2RjGK+XY/2hdf8N/HLwP4m8brYjTXR9Cv/
ABlpUkkuh6jZOchpo08w2k6vtOCWicgfOgUgfbrfFvwV9gvLyLxVo93FaWA1SZbW9jmdbUjKzbVY
kq38JxgngZr6/CYrDV8PDEYV8/N1/laesXF/aXVS22aTPKqKOH0la9r/AC/Jp9Hs0eP/ABM17w/+
x58H7i30a5ur/wAQ6pPJJbTarctc3FxdMoWS5ctxwu3OAATtGOSa/NfUtQuNWv7i9u5Xnubh2kkl
kYszMTkkk9ST3r0L9oD4yX3xr+IV7rU5eKwQ+TY2rHIhhBO0fU5JJ9Se2K8p1C8lhgmFnEl3eqql
bcyBOpwCx7L1OcdjgE8V+25FlzwFB16+tWer7+h+BcSZvLNsX7Om/ci9PN9x91qFtYvAk8yxvO4j
iUnl29AO/r7CrFVLPTyzQXN1HDNqSReW08UZHXlguSSASPXtWpDpt1cSLHHbSu7dFVDk/SvpfaKN
3UaX9dT5P2TlZU03/XQrV0HgnwFr3xF12DSPD2mz6lfTHiOFcgDuzHooGRkkgDPJrpNJ+D+s2+gT
+JNc0XWzo9tLFE1npVg1xfTtISECR8BFJUjzZCsYII3FsI3198Nf2a9Y8ceD7KO7bX/g3oCzRudB
0i+jF9qkYVtzX1wsYkyS3EQIjABzGTgj5XNOIaWFi4Ydpva/Rf5vyXzPuMl4Tr461fGe5T/F/I8w
+H/gjwn8JdSey07Qbz4vfFJfNitrXT7N5NE0+8jwGjmuiBG7xsw3gE7OAQpw1erfEX4Zy6lo/hfV
PjVq198QfEt3IjaX8N9JWKCxm1TDHZCq/MYo1OWlldvLUSM0hU7a9k1C+8Lfs3+B9L0Dw7osk91d
StbaL4csH3XWpXRBZgGc8AcvJK52ooLMQBVz4afDS90bU7rxd4uuodZ8e6lF5VxdQA/ZtOt87hZW
YblYVOCzHDSsN79FVPyjE5hVr1PauTctfee9vJbL5fefseFw9DAU1RwkeVL7xnwv+F9z4fvp/FXi
q4t9V8c38At5Z7dSLXTbYEFbGzU8rCpALMQGlYb2xhVT0iiivJNQooooAKKKKAPKvg3/AMlF+O3/
AGOdt/6j2jV6rXlXwb/5KL8dv+xztv8A1HtGr1WgDitN8O2N18X9c8TRa3Be3cGkWmivpURUvYMJ
Jrh3kIYkGVZoMKVGBEDlg/Ha1w/wvsvDs03i/wAReHr251D+3teuJL+a4XaFurRU06SOMFFPlobH
aOoJDMGIau4oAKgvrG21OyuLO8t4ru0uI2hmt50DxyIwwysp4IIJBB4INT0UAeD2d5dfst30Gm6l
PNefB25kWGw1Ody8nhaRjhLa4c8tZEkLHKeYSQjnZtZfd1YMoIOQeQRUN9Y22p2VxZ3lvFd2lxG0
M1vOgeORGGGVlPBBBIIPBBrw6zvLr9lu+g03Up5rz4O3Miw2GpzuXk8LSMcJbXDnlrIkhY5TzCSE
c7NrKAe8UUisGUEHIPIIpaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig
AooriPjZ48X4a/CvxH4h3iOe1tWFuT/z2f5I+O/zMpPsDVwg6klCO70InNU4uctkfnB+138Qv+Fh
fHDXZopPMsdOf+zrbnI2RZBI9i+9h/vV4vUlxM1xPJKxJZ2LHPNR1/RuBwyweGp0I/ZR/NOPxTxu
KqYiX2n/AMMFTWdnNqF1FbW8TTTysESONSWZicAADrTIYXuJFjjUu7HAUd6/Qv8AY/8A2U08B2tt
4y8WWobxDMoeysZl/wCPJSOHYH/loR0H8Pf5uF8/N82pZVR55ayey7/8A9HJsnq5tX5I6QW7/rqb
H7JP7LEPwp02HxN4kt0l8W3MeYoXAIsEYdB/00IOCewOB3J+mKKK/CsViquMqyrVneTP33C4Wlg6
MaFFWigooorkOsKgvbdruzngSaS2eWNkE0WN8ZIxuXIIyOoyKnooA/Mb9nP/AIKAfHq9/aMb4H+L
vC2ieNtatdWuNKuNSWQaVNGIWcSzuVDRMoWNnCpGCwGBnIr9Oa871v8AZ/8AAeuR+KWbQILLUPEl
3DqN/qliTDefa4UVILiOYfNHJHtBUrjDFjjLtmh4B8fax4f8SQ+APH80b+ImRm0fXkjEVv4ggQZY
hR8sd0i8yQjggGSP5NwjAPU6KKKACiiigAooooAKKKKACiiigAryr4N/8lF+O3/Y523/AKj2jV6r
XlXwb/5KL8dv+xztv/Ue0agD1WiiigAooooAKKKKACiiigAooooAK8m/aj+L3iL4E/BfXPG/hvwr
B4vuNJQTXFlPqAtBHBzumB2Nv28HYMEjODng+j+IvEemeEdBv9a1q+g0zSbGFp7m8uXCRxIoyWJN
eW+HfDuqfGrXrDxf4vsJ9M8K2My3Xh3wpeIUkd1OU1C+Q/8ALX+KKA/6rh2Hm4EQB8/f8E6P2nPi
x+1x4i8ceL/GEunaZ4O0pItO0/R9KsxHC91IfMdzI5aRmjjVBgvtPn528DH1v44+K3hj4eX2j2Ot
6mlrf6vcLbWdqqtJLIScFiqgkIvdzwPWuA8XXNt8C7F9A+FXgRbrxJ4t1K5v1gs4DHp8d0wQTXVy
4+VBwhKggtjt1r5Y+IKnxr8TNd13VDBNfjy9OnezaTyJ3gRY5WTeSRG0iuQowpAUkE81OKxGHy3C
vG41tQ2SVrt9F5ddX2Z6uX5fVzCvGhSWru9+i6vsvk9dDtH+MniKw8Zaxr8utxeKfEcyS2FullJI
vh/TLYt0jTg3Uh2qSxwo45OBjitTvr/xBq8mr61qE+satIMNd3RyVH91FHyov+yoAqNVCKFUBVAw
ABgClr8bzrijGZu3Bfu6e3Ku3m+vpovK+p+yZXw5hcvarVPfqrq1ov8ACunrq/MKKKK+NPrD2f8A
ZEuvJ+JHiW2zj7RpUEuPXy5nGf8AyJXD/Gjw3B8YPj/44tPCnh7xvrGueGms4dVk0+LSvssc8lus
kBie51G3fGwDOEOGU88iug/ZduvsvxuVT0utEuoh9Vlgf+QNZln4c0fQv2pvjnq/jbSfijZWepX2
ky6ReeEbTxMtpeJHYospLaWPLk2vhf3mSOQO9fvmStVssw032/JtfofzPxZlmGx2Y16GKjzJTUlq
1Z8qad00+pPout6hJrHinwLqXw40nW77SSFvv7EtItOv54iqhbg24BS5Q8D5OmR0yCfnTT/2UPhv
efHS/wDE0/j/AFrwKskDLJoOp6W5dWK7dhJcHbtAwmHIYA7jxX6O/EDwRFqZi8deHtHtbrx9pWnT
Jo82oNLArb1/1cwBUkYLYV/ulj93JNfP/iO+8M/tofCRvGx0bxZ4f/4RmNzLe6XBbiW+ZQxurS1M
ufMVGRf3hTGWIQlg4X0qmWS+sxzDL60qc7rm2alJLTmXX+7L4o7c1t/nJ4HE06Dp4aanCzSjUV2r
7qM42mk/PmV911ON1P8AZa+GXhvVvCELarqGqaZrk8avr95qVvpmmRK7FUiSSRHM11IwKpbx/MSC
WKDGfW/B37I/7PHh3xVqHhu1gsdV8Won9o3mn3ettJqCxMfllkiWQMI/mCqSu0DAFcx8efDvhu6/
4J43d34BeX+yvD+nW/iLSZLiUyzLNaXC3Leax5L70kD/AO0Wr4F8cftDa7oviLXv2j/DGmalFrXj
DUdV0ZrzUbWQ2MWly28cFhGp+UGYNaTONpwNozu2ste/PHZjWdq1SXNHfV6dGVhsrw1GFvYRjK2q
S6/8Ofq34e8J/Au303RdQ0qz8E3dlrE5ttKvFe2uVvZgWBjgclvMcbW4Qk/KfSuQ8BeO/F3xo1Xx
Ro3h/wAB3Hw5+HUlndafaeLHYWmpSXBBRbi3gC/KoOSMkngElGGys39mz9iTwt8L9N8Fa9r8lx4k
8VaLpNra2LXmBDpeFDusKKAM+a0jbjySckbua+oa55VYrd87872X+f8AWjPVjClS+BfoeV/A39m/
wj8A7G6/sOO6vtZv8tqOt6nO093eOTuZndj3bn1PGSTzXR/Ev4l2fw50y1zazazr2pS/ZdI0KyI+
06jcYzsTPCqo+Z5GwsagsxwKPiX8S7P4c6Za5tZtZ17UpfsukaFZEfadRuMZ2JnhVUfM8jYWNQWY
4FZfw0+Gl7o2p3Xi7xddQ6z491KLyri6gB+zadb53Cysw3KwqcFmOGlYb36Kqcs5yqPmk7scpOTu
w+Gnw0vdG1O68XeLrqHWfHupReVcXUAP2bTrfO4WVmG5WFTgsxw0rDe/RVT0WiioJCiiigAooooA
KKKKAPKvg3/yUX47f9jnbf8AqPaNXqteVfBv/kovx2/7HO2/9R7Rq9VoAzPDfhvTfCOkx6ZpFqLO
xjkllWFWZvmkkaRzliSSXdm69606KKACiiigAqC+sbbU7K4s7y3iu7S4jaGa3nQPHIjDDKyngggk
EHgg1PRQB4PZ3l1+y3fQabqU8158HbmRYbDU53LyeFpGOEtrhzy1kSQscp5hJCOdm1l93Vgygg5B
5BFQ31jbanZXFneW8V3aXEbQzW86B45EYYZWU8EEEgg8EGvDrO8uv2W76DTdSnmvPg7cyLDYanO5
eTwtIxwltcOeWsiSFjlPMJIRzs2soB7xRSKwZQQcg8giloAKKKKACiiigAooooAKKKKACiiigAoo
ooAKKKKACiiigAory/4t/tHeCPg3BIms6mtzqoGV0uyxJcH03DOEH+8RkdM18MfGT9tXxr8TPPsd
Kk/4RfQ3yv2eyc+dIv8A00l4J+g2gg8g17uX5LjMyd6UbR7vb/gngZjneDyxWqyvLst/+B8z7P8A
jF+1h4G+EKzWst5/beuJkf2bp7hijekj9E9xyw/u18G/HD9qTxd8bt1lfSR6doKyeZFpdqMJkZAL
sfmc4Pc49AK8dkkaRizsWY9yabX6nlnDeEwDVSfvzXV7L0R+T5pxPi8wTp0/cg+i3fqwpVUuwVRk
ngChVLMABkngAV9sfscfsni6+x+PPGNpm34l0vTZl/1ncTOD/D/dH8XXpjd62Z5nRyug6tTfou7P
IyrK62a11Sp6Lq+yNv8AY6/ZPGiR2fjrxjaZv2Am0zTZl/1I4KzOD/F3VT06nnGPsqiivwjG42tj
6zr1ndv8PJH7/gcFRy+hGhQVkvx82FFFFcB3hRRRQAUUUUAFc74+8A6P8SPDc2i61DI8DOs0Nxby
GK4tJ0O6OeCQfNHKjYZXHII9MiuiooA8s8A+PtY8P+JIfAHj+aN/ETIzaPryRiK38QQIMsQo+WO6
ReZIRwQDJH8m4R+p1zvj7wDo/wASPDc2i61DI8DOs0NxbyGK4tJ0O6OeCQfNHKjYZXHII9MiuO8A
+PtY8P8AiSHwB4/mjfxEyM2j68kYit/EECDLEKPljukXmSEcEAyR/JuEYB6nRRRQAUUUUAFFFFAB
RRRQAV5V8G/+Si/Hb/sc7b/1HtGr1WvKvg3/AMlF+O3/AGOdt/6j2jUAeq0UUUAFFFFABRRRQAUU
UUAFZviLxHpnhHQb/WtavoNM0mxhae5vLlwkcSKMliTR4i8R6Z4R0G/1rWr6DTNJsYWnuby5cJHE
ijJYk15PpOk3fxY1K38deO4G0LwXpTi90Lw3qX7k5T5l1HUFbgSD70ULcQjDv+9wIgCbw74d1T41
a9YeL/F9hPpnhWxmW68O+FLxCkjupymoXyH/AJa/xRQH/VcOw83Aim1r4mt8VpPFXgz4aa6LPxDp
scaz+IWszPY2zNIFkiSQHaZlXJA5GfodrrzXfHvjj4pNounaPHoXgHSZNuqajq0AlbWg0f8AqbdM
8R4YZkz1GOxU+g+DvBeh/D/w/b6J4d0yDSdLt8+Xb24OMnqxJ5Zj3JJJruUYYdc09ZaNLRpev+Xn
r2N7Knq9X/W/+R5xc6Hpv7MvwL119Luru+vUSS4a9v5jLNeahMQiyNnuzlOB2Hfk18g2Fr9is4YN
xcxqAWJyWPcn3J5r6H/bC8VedeeGvCcL8bm1e7UH+Fcxwg+xYyH6xivAK/JuNcdKrUp4Zu7+KXq9
F9yu/SR+o8F4VuNbHT3k+Vei1f3tpf8AboUUUV+ZH6aFNZljUsxCqoyWJwAKUnAyeBXqXwH+CL/F
C8i1/XYGTwhbyZgt3GP7TkU9SP8AniCP+BkY6A59zKMprZtX9nDSK+KXZfq30XX0Ta8HOM3o5PQ9
pPWT+GPd/ol1fT1aT6P9lv4Yale65B4+vg9jpkcEkOmQMuJLsSABpmz0jwPlHVvvdMZ+gvH/AMQv
Dvwt8J3/AIl8Vatb6Lolim+e7uWwo9FA6sx6BRkk9Ky/ip8VND+DnhVNS1JZJpJZUstO0uyTdcXt
wwPlwQoOpIU/QKT2ryXSvBmufEDT/wDhN/jP4Ytda1zRpjfaJ4D0Ii5NjEzfuTMsjqk1ySudzbUX
ZxghjX77hMHSwtCFOCtTjour7/i3q/PbofgtetVxlaeKxLvKT1+7ZLslZenc1f8AhFvGPx0+IXhn
xc3iy40D4T2UVrq+laPpaTWl9q0zKHVr0uFZI1z/AKkD5u/v6dcePrK08cWnhCy0fVb+8ePzrq5t
LIrZafGVYq007lUyxXaI4y75OSoXLDM1PwdffFrwlpcXi5dS8Kq7tLf6Bo2r/LcJkhIZ7iNEcjbt
LpEyqSWQtIgy3fqoVQo6AYFXOo52XRHJKXMfNmn/ALE+mXE9/a+IfF+r6r4Rvb2e9l8GWf8AomkZ
eQsqCPczlQDhgXO4jI2D5a9ob4S+B38HWHhJ/B2gy+FtPZJLTRZdNhezgZWLKyRFSqsGJIIGcknq
a6yiqqVqlW3PK9hynKfxO4Vx3xL+Jdn8OdMtc2s2s69qUv2XSNCsiPtOo3GM7EzwqqPmeRsLGoLM
cCj4l/Euz+HOmWubWbWde1KX7LpGhWRH2nUbjGdiZ4VVHzPI2FjUFmOBWX8NPhpe6Nqd14u8XXUO
s+PdSi8q4uoAfs2nW+dwsrMNysKnBZjhpWG9+iqmJAfDT4aXujandeLvF11DrPj3UovKuLqAH7Np
1vncLKzDcrCpwWY4aVhvfoqp6LRRQAUUUUAFFFFABRRRQAUUUUAeVfBv/kovx2/7HO2/9R7Rq9Vr
yr4N/wDJRfjt/wBjnbf+o9o1eq0AFFFFABRRRQAUUUUAFQX1jbanZXFneW8V3aXEbQzW86B45EYY
ZWU8EEEgg8EGp6KAPB7O8uv2W76DTdSnmvPg7cyLDYanO5eTwtIxwltcOeWsiSFjlPMJIRzs2svu
6sGUEHIPIIqG+sbbU7K4s7y3iu7S4jaGa3nQPHIjDDKyngggkEHgg14dZ3l1+y3fQabqU8158Hbm
RYbDU53LyeFpGOEtrhzy1kSQscp5hJCOdm1lAPeKKRWDKCDkHkEUtABRRRQAUUUUAFFFFABRRRQA
UUUUAFFct4/+J/hj4X6UdQ8S6xb6ZCQTHG7Zllx2RB8zfgOO+K+KfjJ/wUA1nXvP07wHaNoVicr/
AGjcgPdOP9kcrH36bj3DCvWwOV4vMZWoQ079PvPIx+a4TLY82InZ9ur+R9ifE/43eDvhDYmfxHq8
cE5XdHYw4kuZf91AeB7tge9fD/xk/bu8VeNvP0/wojeFtJbK+dE+buQepk/g9cJgj+8a+adW1m/1
6+mvdRvJ767mbfJPcSF3dvUk8k+9VFVnOFBY+gFfp+XcLYXCWqYl88vwX+fzPyvMuLMVjL08KuSP
/kz/AMvkSXV5PfXDz3ErzzOxZnkOSSTkk/jUNa+j+Edb8QzGHTNJvNQmH/LO2gZ2/ICvS/Dv7I3x
X8SBWg8I3loh6nUCtqR74kKn8q+nqY7B4VWnUjFLzR8tTy/HYp80KUpN9bP8zx2lr6x8O/8ABOvx
rfMravrek6XETysbvNKPfAXb/wCPV654E/4J6+FPDup2d7ruuXXiD7PIJGtVgFvDLj+FvmYkfQjP
tXh4jijLaKfLPmfkj3cPwnmdZrniorzf6I8w/Y9/ZPPiyW18beL7T/iSRtvsNPmH/H4wP32H/PMH
t/F/u53ffyqFUADAHAApsMMdtDHDDGsUUahEjRQFVQMAADoAKfX5FmGYVsyrutWfouyP2PLsvo5Z
QVCivV9W+4UUUV5h6gUUUUAFFFFABRRRQAUUUUAFc74+8A6P8SPDc2i61DI8DOs0NxbyGK4tJ0O6
OeCQfNHKjYZXHII9MiuiooA8s8A+PtY8P+JIfAHj+aN/ETIzaPryRiK38QQIMsQo+WO6ReZIRwQD
JH8m4R+p1zvj7wDo/wASPDc2i61DI8DOs0NxbyGK4tJ0O6OeCQfNHKjYZXHII9MiuO8A+PtY8P8A
iSHwB4/mjfxEyM2j68kYit/EECDLEKPljukXmSEcEAyR/JuEYB6nRRRQAUUUUAFFFFABXlXwb/5K
L8dv+xztv/Ue0avVa8q+Df8AyUX47f8AY523/qPaNQB6rRRRQAUUUUAFFFFABWb4i8R6Z4R0G/1r
Wr6DTNJsYWnuby5cJHEijJYk0eIvEemeEdBv9a1q+g0zSbGFp7m8uXCRxIoyWJNeINey/EjXtN8S
eMLb7JYx+Ze+DPh7eSpBd6jNEhdby6jcj99wDFC3EOQ7/vcCKoxcnZDSb0Qapq1t4lhj+JvxRc+G
PAWkSLdaB4a1FSkkko5jvbyLq05xmG2wTFwzDzcCK9deDj+1FpfhrXNdbW/D/gsGSeXwjeRrC2ol
ZMwTTOrbvLK4byz7EHudb4ceEPFvjS1vdZ+K0OnzrfTwXWneFPs8c0OkeUSyMZCMvN83zHpxj2Hr
tdvMsK7U3ea6rZadPPz8tO5vdUtI/F3/AMv8/uIrW1hsbWG2tokgt4UWOOKNQqooGAoA6AAdKlor
gvjp40fwH8K9e1O3fZqDw/ZLPB58+UiNCP8AdLbvoprhXvPVnM7+p8hfEbxV/wAJ18SvEuuq++1k
ujaWZByPs8P7tSPZmDv/AMDrBqGztUsbOG3jGEiQIPwGKmr+es0xn1/G1cT0k9PRaL8Ej+kcqwf9
n4GlhusVr6vV/e2woortfg/8I7v4xay7TGS08JWUm2+vEJVrlhybeJv/AENh0BwOTxeV5ZWzSuqN
LRdX0S7v9F1ZGaZpQynDuvW1fRdW+y/V9EXfgl8GZvi9qQ1DUVeHwZayYkcZU6lIp5iQ/wDPMEYZ
h1+6O5Hs/wAdv2mfCnwCs7PQLZYL3xTdLHa6bo0Dxxw27PhIWuGLKIodxUcZYj7qtXIeJ/j9rHiu
bTvh/wDs8aB/aEzxeWfGVzYOvh3SbZGMZeKUgLdMCpVViLKSDydrAehfCP8AZn8I/C+4k1y6tIPF
Hj68uJL7UvGGqW0bX1zcyZ3tGcfuIwDtWOPAVQBySzH98wOCw2W4eNGkvd19W/5pf15aI/BMZjK2
YV5YrFO8nslsl0S8l+O71OI+DvwL8caB8ZG8c+Nm0bXPEElj9nvvEMk80z7XXcbTTrf5UtYUkxul
fc8gUrsQHdXt/g34c+Hfh+t+dC0xLS41CY3N9eSSPNdXkp/jmnkLSSEDgbmOBgDAGK6SiumpUlUl
zS3PPlJyd2FFFFZkhXiV/wDteeAX8ReKvCeg3kniPx7oWorpC+FrMBbu9umj3gRZ48pfnEkpwsfl
OWwAN3s19JPFZXD2sSz3KxsYonfYHcA7VLY4BOBntX5+fs7/APBMPxV4E+MCfFnxr8WLqHxnJfya
ncW/hOLZHLLK5eVJJ51PmRuWIZDEMgnn0APsX4afDS90bU7rxd4uuodZ8e6lF5VxdQA/ZtOt87hZ
WYblYVOCzHDSsN79FVPRaKKACiiigAooooAKKKKACiiigAooooA8q+Df/JRfjt/2Odt/6j2jV6rX
lXwb/wCSi/Hb/sc7b/1HtGr1WgAooooAKKKKACiiigAooooAKgvrG21OyuLO8t4ru0uI2hmt50Dx
yIwwysp4IIJBB4INT0UAeDWd7c/st30Gm6nPLd/B24kWGw1S4cvJ4Wdjhba4c8myJIWOY8wkhHOz
ay958Hvjl4N+POjavq3gjV01rTNL1ObSZrqIYRpo1RmKH+JCHUhujA5HHNZv7R3wPX9oj4V6n4Il
8Vaz4TtdQwJ7nRWjDTJzmKUOpLRH+JVKlsYJwSD4X+wp+xr4z/Y38TeNdJuvFGneK/A2uRw3NrNH
G9vdQXURK/NCdygPG/LCQ8xLwKAPsOiiigAooooAKKKKACiiigDG8VeMtE8D6W2o69qdvplmpwHn
bBc/3VUcs3soJr5x+IH7R3xH8ZLJp/wp8Bax5D5Ua9qFgwB941YbF9i5OQfuivqFrOBrlbhoIzcK
NqylBvA9AeuKmrroVqdF80ocz89vuX+ZyV6VSsuWM+VeW/3v/I/OV/2NfjT8TNUk1PxPcW9veTnc
0+r6gJWI7f6veRj0xx0ru/Dv/BNxtyPrnjJFxjdDY2ZfPrh2Zcf98mvt+ivblxFmDjyU5qC7RSR4
ceG8uUuepBzl3k2z5w8O/sEfDDRdpvY9U1turC7ugin6CNVIH416d4f/AGf/AIceF1T+z/Bmkq0f
3ZLi3Fw6+4aTcc/jXoNFeNWx2Kr/AMWo382e1RwOFw+lKlFeiRFa2sNlAkNvDHBCowscShVH0AqW
iiuI7QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACud8feAdH+JHhubRdahkeBnWaG4t
5DFcWk6HdHPBIPmjlRsMrjkEemRXRUUAeWeAfH2seH/EkPgDx/NG/iJkZtH15IxFb+IIEGWIUfLH
dIvMkI4IBkj+TcI/U653x94B0f4keG5tF1qGR4GdZobi3kMVxaTod0c8Eg+aOVGwyuOQR6ZFcd4B
8fax4f8AEkPgDx/NG/iJkZtH15IxFb+IIEGWIUfLHdIvMkI4IBkj+TcIwD1OiiigAooooAK8q+Df
/JRfjt/2Odt/6j2jV6rXlXwb/wCSi/Hb/sc7b/1HtGoA9VooooAKKKKACs3xF4j0zwjoN/rWtX0G
maTYwtPc3ly4SOJFGSxJo8ReI9M8I6Df61rV9Bpmk2MLT3N5cuEjiRRksSa+VtY1rxd+09fSaj4V
k06G30XVIoLLQtUchtKYqzLqt9CRiScbf3VvyIW+ZwZQVh2p0pVXZaLq+i9S4xcmT+MvifeeL/HX
h2bVPDV9rV9LMl54U+HP+pk2hvl1bVCwIiYYLRQv/qsB2Hmf6n23wn8EdH0Hx/q/jjULi78QeJ76
RvIvNUZXOnQHpbwKBtRQCRkcnJ55Oei8CeCx4N0HTrS71G48QatbWwtpdb1AK13cLuL4Z8Z2hmOF
JOB3J5rpa2lWVOPs6OnRvv8A5Ly+8tzUVyw+b7hRRXlfxK/aM8K/D2WawilbxBrycf2ZpzBjG3/T
WT7sQ+p3eimuNtRTlJ2S3b0S9X0MopykoxV29ktW/RdT1MnAyeBXyX+1F8StN8aa5onhzRdQh1Gz
0uSS9v5LZ98YuMeXFHuHBZQ0pIBOMiuG8f8Axb8XfFAyRavf/wBm6O3TRtMdkiYeksn3pfocL/s1
yUMMdvGscSLHGvAVRgD8K+AznibDRo1MNg3zykmubZK+jt1btfsuqbP0bJOFsU61PFY33Ixaaju3
bVX6JX9X0aQ+iqs2qWlveRWb3MIvpkaSK1MiiWRV+8VUnJAyOegzWf4U8PX3xT03VE8V3UPw68KW
rxvqmtSaoIWsLYkYSSYEIs0hyu1GYKDndX55l2WYjM6yo0F6vsu/p+um7R+kZlmmHyyi61Z+iXV9
vV/8HZM19J03UfFniKy0uw0XWNR0tpT/AGlqWnxKkFrEm0y77mQrDEQrAnc27GdquRivVtB0xP2m
G8TaX8LPiD4r8H+C9Bng0my1HS7VIdKlgKlb2O0YFWnnJB/0iXzFQuNq7su3U/CvwH4p1/WNK0zR
rCx8CfADRrSS2tPD/wBnSe68TJKjDzZy4PlQsHEn/PRmJ3etfR+i6LYeHNJtdM0qyg07TrWMRQWt
rGI44kHRVUcAV+94DL8Pk+HWHo6y0bfd9359lsl53Z+EZlmFbMcQ8RXevRdIrsv1fV/JLG+G/wAO
dC+E/gzTfC/hy1a10qwjCIJJDJJI38Ukjnl3Y8ljXTUUV0yk5Nyk9TyG23dhRRRUiCivj3/gp58f
PHn7PPwR8Pa/8Ptd/wCEf1a78QRWM1x9jgud0JgmcrtmjdR8yKcgZ4617f40/aQ8AfCOTwVpvjvx
PDoWq+KIwun/AGi3lMczqqeYWkRDHEoMi5aQqoBznAOAD1OivDPAX7cHwM+J3j4eCvDPxF03U/Eb
u0UNqIp4o7hx/DDM8axynjgIzZ7ZrX+If7WXwl+E/j4eDPGHjS08PeITYHU/s99BMkQt/nwxn2eU
CfLYBS+4nAAJYAgHrlFePfBj9rz4QftCapdaZ4B8cWeu6nbKZHsWhmtZygxl0jnRGdRkZZQQM8mt
/Rfj94C8RfGHW/hZp+vfaPHmi2ovb/SfsdwvkwkRkN5rRiJv9dHwrk/N04OAD0KivLrr9pz4aWfx
R174dTeJNnjLQtPfVdR037BcnyLVYllaTzBH5bYR1O1WLc4xnIr5c/Z0/wCCmug/GX9pfxR4Q1XU
7LSvDFzcxaZ4LS3sbl5dWlMzr5sjmPMZZAhCuIwu7ByQTQB96UUUUAFFFFABRRRQAUUUUAeVfBv/
AJKL8dv+xztv/Ue0avVa8q+Df/JRfjt/2Odt/wCo9o1eq0AFFFFABRRRQAUUUUAFFFFABRRRQAUU
UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR
QAUUUUAFFFFABRRRQAVzvj7wDo/xI8NzaLrUMjwM6zQ3FvIYri0nQ7o54JB80cqNhlccgj0yK6Ki
gDyzwD4+1jw/4kh8AeP5o38RMjNo+vJGIrfxBAgyxCj5Y7pF5khHBAMkfybhH6nXO+PvAOj/ABI8
NzaLrUMjwM6zQ3FvIYri0nQ7o54JB80cqNhlccgj0yK47wD4+1jw/wCJIfAHj+aN/ETIzaPryRiK
38QQIMsQo+WO6ReZIRwQDJH8m4RgHqdFFFABXlXwb/5KL8dv+xztv/Ue0avVa8q+Df8AyUX47f8A
Y523/qPaNQB6rRRRQAVm+IvEemeEdBv9a1q+g0zSbGFp7m8uXCRxIoyWJNQeLvGGjeA/Dt5ruv6h
DpelWib5riY4A9AB1ZieAoBJJAAJrwO38IeKP2ovEmheKdeuLjwz8LrOWPUdH0KGUx31/Ijkxz3J
XhAdodQrEhWX7rFiOmlR51zTfLHv+i8zSMObV6I5TQ9S8QftlfETUjqWh6novwk0hZ7eweSZrO4O
oKdqXhUqd80ZB2RsNsJ+ZsyBQv074B+HugfDHwza6D4c0+PTtOgGdq8vIx6u7HlmPcn+QFdEqheA
ABnPFcd8Qvi94W+GNura5qSpdyLmHT7cebdTf7sY5x/tHC+pFOpV51yU1aPa/bq/6sglUv7sdF28
/wDM7KvPfiT8dPCnwxzbX9219rBXdHpOngS3J9CwzhB7uQPTNfOvxA/aQ8XeOvNtdKLeENGbjFu4
a+lX/alHEf0Tkf3q8ttrOG0D+UmGdizuSSzseSWY8k+5r4bMeJ8HgrwofvZ+Xwr1l1/7d+9H2GWc
K43HWqYj91Dz+J+ken/b33M9B+IHx38Y/EbzLc3J8M6I2R/Z+mynzpV9JZ+CeOqptHrmvPrW1hso
RFBEsUY/hUYFTVh2/idNU1i/0qwt7oy2sbeZfS2zC1SXjEe4lTI3OSEyAAQWBIB/MsdmmNzVt15e
6tbLSK+X6u78z9UwGU4HKUlQh7z0u9ZP5/orLyL+sa1p/h3Tpr/U72Cwsohl57iQIg9OT3Pp3rKu
rvWdbbSZ9DltbTSp1W4uLq9hl+0FOCI0hYLtLDOWc5X+6T0m0XRZ9N09hreqnW7p5hcPPcQpHHG4
AwIkA+RRjIyWbOSWJ5qLVNd1DUrqPRPB2mv4p8V3gK2mm2brkn+87E7UUdSzEAAEngVGBy+vjqyo
4WHPK+/2Uu700S3u/uN8XjaWFpOriJcqSvb7X4P8vvKuof2H4d1e6u4oI7TU9SkjiuryCES3MpIx
HFGOskjBTsjyBwWOAGNfTvwl/ZpHjzSdA1n4k+HRpOj2BW50r4f3My3UdvMDn7ZfSABbi5cjdtK7
YwQnzYON79m39lWD4ZW9t4j8ZSx+IPHDjzl3sZrXSJGXEn2UMOJGGFeYAMwRRwAc/RFfu+X4Gjk1
D6vh3zT+1P8Am0tZX2S1S8vV3/DM0zSpmNd1XoleyWyT/V9X19BAAoAAwKWiiug8MKKKKACiiigD
8/P+C0n/ACbb4S/7GqD/ANJbmuN/4KYeFbLx18Uf2TfDepRefp2saj9guYt7JvilmsUddy8jKsRk
civtT9p79l3wr+1h4J07wt4u1DWNO0+x1BdSjk0WaKKUyLG6AMZIpBtxI3AAOQOarfF79k7wj8aP
GPwx8S63qOtWt98Prtb3S49PnhSKZ1eFwJw8TFhmBPulOC3PTAB8P/8ABQv4L+Bvg38cP2ZL3wJ4
V0rwfcXOviCdtEtUtfNENzZmNn2AbnHmN85yxzyaZ+1z4b8F+Lv+Crvww0j4hC0fwpc6Lai4iv5f
LglkH2xoI3J4KtMI12nhs4PBr7l/aA/ZR8JftH+JPAWteJdR1qxuvBd82oaemlTwxpLIXhciYSRO
WXMCfdKnk89MfFH7Ufwz8O/GL/gq94A8HeLNPGqeH9V8KtFdWxdkJAgv2VgykFWVlVgQeCBQBD+1
B4F8F/B3/goX+zqvwl0jS/DXiK8voU1nSvD8KQRpbvMke9oIwFQvC9yCcDcq5Pqex+Eeq2+n/wDB
Y74tW80sccl94cWCFZJApdxDYSbVB+8dqMcDsCe1e6/s3/8ABOn4R/sw+MH8VeHYtX1zxEqPHa6h
4guY53s1cbX8lY4o1UkZG4gthmAIBIKftIf8E6vhL+0942i8XeJF1nRvEHlpDc3eg3UcBvVQYTzl
kikBIXC7gA2AATgDAB84/DHWNF8df8Fh/iWbSa01nSn8PSWE+0rNDIyWtpFNGeqsAysjD1BB71T/
AOCf/wAM/B837b37SMcnhTRJI/Dmtu2iI2nQkaWVvbhVNsNv7nAVQNmMAD0r6m+Cf/BP/wCFv7Pf
xYj8feCv7a0+/TTDpY06W7SW0KMF3yndH5hkYpkkyYyTgAYAz9W/4JzfCjUv2ioPjNFNr+m+JI9U
j1l7Czu4hYS3atvMjI0TP8zfMwVwCc4AzQB9SUUUUAFFFFABRRRQAUUUUAeVfBv/AJKL8dv+xztv
/Ue0avVa8q+Df/JRfjt/2Odt/wCo9o1eq0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR
QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA
BRRRQAUUUUAFc74+8A6P8SPDc2i61DI8DOs0NxbyGK4tJ0O6OeCQfNHKjYZXHII9MiuiooA8s8A+
PtY8P+JIfAHj+aN/ETIzaPryRiK38QQIMsQo+WO6ReZIRwQDJH8m4R+p1zvj7wDo/wASPDc2i61D
I8DOs0NxbyGK4tJ0O6OeCQfNHKjYZXHII9MiuO8A+PtY8P8AiSHwB4/mjfxEyM2j68kYit/EECDL
EKPljukXmSEcEAyR/JuEYB6nXlXwb/5KL8dv+xztv/Ue0avVa8q+Df8AyUX47f8AY523/qPaNQB6
rXMfEz4hab8K/AuseK9XSeTTtMh82VLZN7tlgoAHQZJHJIA6kgVq+IvEemeEdBv9a1q+g0zSbGFp
7m8uXCRxIoyWJNeI6t8NNS/ag0y61DxidT8L+FHjJ8PaCjNBdK/8Go3i8Hze8du3EanLgyHEWlPk
54+0+G+voVG3MubYr+Bvh/4j+P15pPjb4taXDp+l2cjXOg+DQh2xB8ET3u7mSTaq7UwoUFty5ban
sfjj4jeHPhxpovfEGqQ6fG3EUTZaWY/3Y41yzn6DjvXxhqfir9rqz/aG8JfDa11zwlBoZ04vd6m7
W8k81ukjo128bnzTMQAVRAVJ5bHz7fYbP9jY6jqUmpeKPH2razqU4/fXUEEccrf7IeQykKOmBgew
rqxPNrqtPhWqVu6dnp8m3+JVST9ooyT5e61+5Nq/3r9Dl/iB+1J4k8WeZaeFrdvC2ltwb24CyX0o
/wBleUi/8eb6V4nNfWNlcT3N3fK95M26e6u5980rerMx3E19XaX8CfgxYanq2n3V5b6zquiwJc6l
b6jrbPLYxMpZZJ4VkURqyqWBZQCASO9dh4WuvhFomi6JrXh658G2mlaxdLZ6Xqeny2oiv7glgsUM
ynEshKOAqksdp9DXxmMynEZl7uKxLUP5IRsvvbbfzT8rH02CzjDZZ72Dwqc/55yu/uSSXya87nxr
pOm6r4h2nR9B1jV1bpJZafK6fi+3aPzqx4n8E+PvD/h+bVU8F3EyJcR2nlyX1ujJLIQFEoDt5S/M
uWfAAYeor9Bby1S+s57aRpEjmjaNmhlaJwCMEq6kMp54III6g1zGi/Cfwl4d8D3fhDS9DtrHw/dp
IlxawggzmQYkkkfO95G6mRiXJ5JzzXPDhfLKUXaDk/70n/7bynZ/rZmNSrF1JKMLq/JFXt1tzc2t
j5ftf2HvFniq80q/8TeMrXRBahJjpWjiW4g84ENuZz5Rk2ngBht4zszXqGk/sdeGoSH1XX9d1V88
xrOltEfbEaBv/Hq+f7P47fFrwb+0FqktppfiDx54Q05ho1x5OnSstxbQMw+0hgColBLMZBhX5zgE
bfcvEXxA1f8Aaq8Hmx+CXjKDRNH/ALRbTdf8TNaTC6tUEaO6WW5QjyfOULgkIa9XLKWBr3jRoRhy
aXcVp6N339dzq4jynNsnlSnisV7SNaKleM3bb4ZR0s10TWvTW6XOeIbP4eeFfi9pPw18DfDCHxr4
uzFdaxPqPmTWejWb8+bPNNvAdwDsRQSTzjjB9Y+Bn7OHhj4Ew6ncadJd6z4g1aUzahruqMHuZ+eI
1wAscajACIAMKM5IzXfeEfDFv4O8N6Xo1tcXV7Hp9rFaLd38pmuJljXAaSQ8s3U/icAVsV9DOs+X
2cXp+Z8D7sfgVu/mFFFFcxIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA
FZPi3TtT1fwvq9jourNoWsXFpLFZ6okKTG0mKkJLskVlba2DtYEHGK1qKAPzB/4J5+N/2jviB+1F
8RNM8ceKpoNE0K/e68XW/wDZNlGL3UlgjsoIg6wAoDHaRt+7KgrBnq5J/T6snR/Cuj+H9S1nUNO0
63s73WblbzUJ4UAe5mWJIldz3ISNF/D3Na1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU
UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFeJ/tXeNPjJ4I+Hcl98GfBem
eMNbw3nre3ZEtsmPvxW+FE568eYCCBhHzgfK3/BPH4y/tEfES1+Jt34i02x8V67b6xDBdw+Mtdud
Fl05vKJ8mK1j0+dUXnJA2cnoetAH6K0V5V/wknxv/wCiefD/AP8AC8vv/lNR/wAJJ8b/APonnw//
APC8vv8A5TUAeq0V5V/wknxv/wCiefD/AP8AC8vv/lNR/wAJJ8b/APonnw//APC8vv8A5TUAeq0V
5V/wknxv/wCiefD/AP8AC8vv/lNR/wAJJ8b/APonnw//APC8vv8A5TUAeq0V5V/wknxv/wCiefD/
AP8AC8vv/lNR/wAJJ8b/APonnw//APC8vv8A5TUAeq0V5V/wknxv/wCiefD/AP8AC8vv/lNR/wAJ
J8b/APonnw//APC8vv8A5TUAeq0V5V/wknxv/wCiefD/AP8AC8vv/lNR/wAJJ8b/APonnw//APC8
vv8A5TUAeq0V5V/wknxv/wCiefD/AP8AC8vv/lNR/wAJJ8b/APonnw//APC8vv8A5TUAeq1zvj7w
Do/xI8NzaLrUMjwM6zQ3FvIYri0nQ7o54JB80cqNhlccgj0yK4z/AIST43/9E8+H/wD4Xl9/8pqP
+Ek+N/8A0Tz4f/8AheX3/wApqAHeAfH2seH/ABJD4A8fzRv4iZGbR9eSMRW/iCBBliFHyx3SLzJC
OCAZI/k3CPL+HviPTPCPij9oTWtavoNM0mx8WwT3N5cuEjiRfDujEsSa534wXHxE1r4fap/wmngX
4eadoVmgvX1Q/EO+gk0+SP5kuYpRo2Y5EYAqy8545zg/LX7Pfij4u+OPjV4mtfHfhnw/f3x1m31T
T9J8Ra3c6RbX2pR6Tp4WdgmnTCa4S0js5xC6wmNppHEO5P3IB9leHfDuqfGrXrDxf4vsJ9M8K2My
3Xh3wpeIUkd1OU1C+Q/8tf4ooD/quHYebgReyV5V/wAJJ8b/APonnw//APC8vv8A5TUf8JJ8b/8A
onnw/wD/AAvL7/5TUAa3xU+DumfFCTQ757u50XXtEu0utP1nT9ouIMMN8Y3Agq6jBBBHQ4PIOJ8P
v2j9B8ceLn8JXWnal4e8UpLcRNpuoRDIMRY43qSCTGu/jjGcE8Ey/wDCSfG//onnw/8A/C8vv/lN
XAeMPD3xcg16Txzpfww+H9t4qto1Mt5a+Kr3ULm4gQfNDFA+nwR+Y6jy/MLhgpIHbG/NOtGNG630
b6J7/f8Ah82YYj61UVOGHcV7yvzX+H7SVuva+h4D+3/qGteBPjc+meHoJ2vvjN4QXwVC0QO0XaX8
S7iew+z3cwP1HSsH4EeEl0X9rHw5+zxFbzHw/wDCvxDq/jC3FyfM/wBFmtoPsIDdyst5Kxzz0Oe1
fUPh3xN49+N+h+GPGcnwZ+HN+bWRrvSpde8UXX2zT5Q21mTforGJwUwWRudowxGDXRW9j8ULPxRd
+JYPhB8LYPEd3AtrcaxH4xulu5oVIKxvMNE3sgIGFJwMVlKMoScZKzR0NOLsz22qmratZaDpl1qO
o3UVlYWsTTz3E7hEjjUFmZiegABP4V4P8Tvjt8TfhF4Zk1vxH4I8AQQZ8uC3i8dXz3F1IekUSf2N
8zH8h1JAya83n+H/AMbv2gNZ8PeMvHngTwofDcBi1LSvAGpeLryzFnMMFJL3Zpsonk6tsbaFyAVy
GFbRpXjzzdlrbza6ItR05paI73SdT8VftValqEN3pI8PfA2a32RyXBki1XXpM8MuCPItwcNzkvgD
oWA968M+GNI8F6BY6JoOm22kaRYxiG2srOIRxRIOyqOB/UnNeff8JJ8b/wDonnw//wDC8vv/AJTU
f8JJ8b/+iefD/wD8Ly+/+U1KpU5/dirR7f11FKV9Foj1WivKv+Ek+N//AETz4f8A/heX3/ymo/4S
T43/APRPPh//AOF5ff8AymrAg9Voryr/AIST43/9E8+H/wD4Xl9/8pqP+Ek+N/8A0Tz4f/8AheX3
/wApqAPVaK8q/wCEk+N//RPPh/8A+F5ff/Kaj/hJPjf/ANE8+H//AIXl9/8AKagD1WivKv8AhJPj
f/0Tz4f/APheX3/ymr4D1b9oT9rLR/25PHnhvwN4eTxNbR3Nmb/wqt1JqOi2IazgOUvZYrcwbgd2
cRjcx+V8ZIB+qNFZnhm61a98P6fPr1hbaVrMkKtd2VndG6ihkI5RZSiFwPXaK06ACiiigAooooAK
KKx/GNjrGqeE9Ys/D2px6Jr09pLHYalNbi4S1nKkRytGeHCtg7T1xigDYor5V/4Uz+1b/wBHFeH/
APwiLf8A+Lo/4Uz+1b/0cV4f/wDCIt//AIugD6qor5V/4Uz+1b/0cV4f/wDCIt//AIuj/hS/7Vj/
ACn9o3QYweC6eBrclfcAvgn60AfVVFfLun/s/ftLW2oW011+1h9stY5VeW3/AOFcaYnmoCCybhJl
cjIyOma+oqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC
iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKjW3ijmkmWJFlkADyBQGYDOAT3xk/nUlFA
BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVm+IvEemeEdBv9a1q+g0zSbGFp7m8uXCRxIoyW
JNHiLxHpnhHQb/WtavoNM0mxhae5vLlwkcSKMliTXlvh3w7qnxq16w8X+L7CfTPCtjMt14d8KXiF
JHdTlNQvkP8Ay1/iigP+q4dh5uBEAHh3w7qnxq16w8X+L7CfTPCtjMt14d8KXiFJHdTlNQvkP/LX
+KKA/wCq4dh5uBFmeGPAOj/EjxF8fNF1qGR4G8bWk0NxbyGK4tJ08P6M0c8Eg+aOVGwyuOQR6ZFe
715V8G/+Si/Hb/sc7b/1HtGoAd4B8fax4f8AEkPgDx/NG/iJkZtH15IxFb+IIEGWIUfLHdIvMkI4
IBkj+TcI/U653x94B0f4keG5tF1qGR4GdZobi3kMVxaTod0c8Eg+aOVGwyuOQR6ZFcd4B8fax4f8
SQ+APH80b+ImRm0fXkjEVv4ggQZYhR8sd0i8yQjggGSP5NwjAPU6KKKAPJPHXhnxloPxW0Xxp4Xv
2v8AR7lU07xBod/ebLeO2BJF3FuOEaPJJA+8PqTVr4nfHix8H/D5PEHhbTLn4i6jfNFDpek+HSLh
7qSXeIyzLkRxZjk3SNwuxvSumvfiNon/AAnEfgm3uGvPEctq11Nb29u08djDg7JLlh8sQcjCKxDO
c7QQrEcb8Af2bPD3wDttVubOaTVfEWszG41HVJY1iXJOfJt4V+WCAH7sYJI43MxGa7PawnBe0Wsd
vNef6G3MpL3t1/WpR+H/AMELrXvEWjfEb4qJba18Q7OFlsLaLBstDR2LGOBBw0vzbTM25sKApwCW
9roornnN1JXf/A+RnKTk7hRRRWZIUUUUAFFFFABRRRQAVHFbxQNK0cSRtK2+QqoBdsAZPqcADPsK
kooAKKKKACiiigAooooAKKKz/EFtqF5oeoW+k3qadqcsDpa3kkQlWGUqQrlDwwBwcd8U4q7SvYUn
ZN2uaFFeH/8ACvfjl/0VvSv/AAm4v/iqP+Fe/HL/AKK3pX/hNxf/ABVen9Tpf9BEP/J//kDy/rtX
/oGn/wCSf/JnuFFeH/8ACvfjl/0VvSv/AAm4v/iqP+Fd/HFuD8XNLQHjcvhqEke4y1H1Ol/0EQ/8
n/8AkA+u1f8AoGn/AOSf/JnuFFeK2nwr+MUN1DJP8c/tEKurPD/wiNmu9QeVyG4yOM17VXJWowpW
5Kinftzaf+BRj+B10K061+ek4W78uv8A4DKX4hRXN/EP4keGPhP4TvPE3jDW7Tw/oVmB517ePtUE
nCqB1ZieAqgknoK5H4J/tQfC79oyO/b4d+L7XxFJYYNzbiGa2niU8BjFMiPtJ43bcZ4zXMdR6lRX
h3xW/bc+CHwT8Wjwx4y+IFjpevDHmWUNvcXbwZxgSmCNxESCDhypwc9Oa7nxV8bfA/gv4ar8QdU8
RWw8GOsDprFmr3cMizOscTL5KuWDM6jIBxnnAzQB3FFeA2v7evwAvPiCvgqH4m6S+vtP9lVfLm+y
tKeAouvL8gnJxxJ1468V33xK+Pnw/wDg9q2k6b408T2vhy51WC5ubRr1XWJ47dVaYmUKUTAZcBmB
YkBcnigD0CivGfg1+2N8G/2gdeuNE8BeObPW9XgjMrWMlvcWkzoOrIk8aGQDuUzjvVj41ftbfCL9
nm+tbH4geNrPQdQuk8yOxWGa6uNhyA7RQI7qpIOGYAHBweKAPXqK5jwP8TvCnxK8F23i3wxr9jrP
hu4jaVNSt5R5QVfvbycbCuDuVsFcHIFeaeA/23vgZ8TfiAPBXhn4i6bqfiR3aKG1WKaOO4cfwwzO
gilPoEZs9s0Ae5UV8aePv28vDfg/9tzRPhpdeLYrLwvDp8llqduNLneT+2pZUW3hLiInbsYHcnyA
t8zcYHuHwp8bprfxK+LNhL8Rl8Vx6JqFvE2iNov2AeHA0JYwm4wPtQfG/fk7cYoA9borwHRf29vg
B4i8fx+C9P8AibpVxr8k/wBmiXy51tpZOypdNGIGJJAGJDk8DJ4rvviV8fPh/wDB7VtJ03xp4ntf
DlzqsFzc2jXqusTx26q0xMoUomAy4DMCxIC5PFAHoFFeM/Br9sb4N/tA69caJ4C8c2et6vBGZWsZ
Le4tJnQdWRJ40MgHcpnHevZJGKxsR1AJoAdRXxH8J/2hvFPi79hvQfH3jL4r/wDCEa/da89nN4p/
4RyLUNyjUHiS3+yxRhRvUCPeF+XO4nPNfRHxL/ak+Fnwd16+0bxp4wtPD2pWemLq8sN3DNzbNIY1
ZGCESOXUgRoS5wTtxzQB6pRXl3wT/ae+F37RcN+/w88X2niJ7HBubdYpbe4iU8BjFMiPtJ43bcZ4
zXnX7Kvx41XxR8Pfiz4m+IviOA6f4X8Z6zp6X91FDbR2en2zLsViiqCFBPzNlj3JoA+lqK8s1j9q
D4Y+HfhHp/xO1jxQmjeCtRUPZahqVncWsl0Dkr5VvJGJnLKpZQqHcvzLlSDTvgp+078L/wBoqG9f
4eeL7PxE9lg3NusUtvcRKTgMYZkR9pPG7bj3oA9RooooAKKKKACiiigAooooAKKKKACiiigAoooo
AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKzfEXiPTPCOg3+ta1fQaZpNjC09
zeXLhI4kUZLEmjxF4j0zwjoN/rWtX0GmaTYwtPc3ly4SOJFGSxJry3w74d1T41a9YeL/ABfYT6Z4
VsZluvDvhS8QpI7qcpqF8h/5a/xRQH/VcOw83AiADw74d1T41a9YeL/F9hPpnhWxmW68O+FLxCkj
upymoXyH/lr/ABRQH/VcOw83Ai9koooAK8q+Df8AyUX47f8AY523/qPaNXqteVfBv/kovx2/7HO2
/wDUe0agD1Wud8feAdH+JHhubRdahkeBnWaG4t5DFcWk6HdHPBIPmjlRsMrjkEemRXRVHcXEVnby
zzypBBEpeSSRgqooGSSTwAB3oA8w8A+PtY8P+JIfAHj+aN/ETIzaPryRiK38QQIMsQo+WO6ReZIR
wQDJH8m4R7HiLXtS8eaLf2Pw68RaTDfW2pHS9S1V/wDSDpu1czeVGAUkuF3IoVyEVmJbcUMbZfj7
wfqPxd1e48M6votpb+A4YVn/ALWa4zfz3mN0UlkY2zbmE/N5r/MW+VU25c5Xwf1qT4Y3GmfCfxLa
2em3lpAyeHtSsbdbay1u1jGTsRQFiukHMsI68yJlSwQA9cs7GOzUkfvJ3VRLcMiiSYqAAz7QATgd
gB6AVYoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKhvI5pbOZLaUQXDI
RHIy7grY4OO/NTKTjFySvbp3Gld2JqK5P+xfFv8A0Mlv/wCAK/40f2L4t/6GS3/8AV/xr53+1sT/
ANAFX/yl/wDLTv8AqtP/AJ/R/wDJv/kTrKK5P+xfFv8A0Mlv/wCAK/40f2L4tPH/AAkluPcWC/40
f2tif+gCr/5S/wDlofVaf/P+P/k3/wAidZRXKx+HfE6yKX8Xb0BBK/2bEMj0zmuqr08Hiq2JUnVw
86Vv5nB39OSc9vO3kc1WnGnblmpel/1SPkf9smC31z9ob9l3QNdihufCV54lvbi6t7pQYZbyK2Bs
1YHg/Oz4B4JOK9wvvB/w003456f4nl/sux+Kl9pEunWn/EwMN5e2KMHdRbhwJlQhTuKMVwOQKsfG
74G+E/2gvBZ8M+LrWaW0S4S8tbuzmMF1ZXKZ2TwyDlHXJ55HJBBFcf8ABT9kbwn8FfFl34t/t3xV
488Y3Fr9gHiLxtq7alew2u4N5EbbVVEyM8LntnBIr0TA8o/4Jp+G9A1n9nfWtavrGzv/ABVr+v6q
PFU1zGss01wLmQeTMWyWURlCFbj5ycfMSfmPxILaH/gm/wDtE6VpMgk8I6b8R7mz0HyzmJbIahaM
qx4JATcz4xxznvmvsrx7+wD4C8ZeONb8TaV4m8b/AA+m19t+uad4L1w6fZas+Tua4i2NktkhtpUH
cT94knsfF37JHw+8T/s8N8FrS0uvDPgnbCqx6LKiXCeXMs27fKkm5mdcszAk5POeaAPH/wDgoR8P
/Dnhn/gnz4k0nTNFsrPT9Dt9N/s2GKBVFqRdwJuTA+VirMCRydzZ6ms39o7wvpfjj9rb9kTTteso
dVsXj1i5e3ukEiPJFZxSoWDZBw6K3PpX038bvgtonx7+E+sfD3xBdahZ6LqiQpNPpsiJcKIpUlXa
zo6j5o1zlTwT061U8S/APw/4q+Jnw48cXd5qUereA47uLTIYZYxBMLiAQyecDGWYhRkbWXnrnpQB
4Z+0xpdna/txfsq6nDbRQ6hPca7bS3UaBZJIls1KozDkqN74B6bj61478HV+PWuftI/tGa38N4vh
VNrEPiyTTb258dDUG1KO0jULaRx/ZvlW3MaDHQllbP3Rj7c8efA/QviH8Tfh7451G71GHVvA8t5N
p0NrJGsEpuYlik85WQswCqMbWXnrnpXCfFz9i3wZ8VPHj+OLLX/F3w58ZTwLbXmu+BNYOmXN9EoA
VJjtZXwABnAOFUEkAAAHyB438D/EH4R/s4/tcXOra98O/wC19Z/s+4vPDnw4vJnh0h5WWK7aW3mU
NAZoGD8klsMegAr7J1D4afBj/hTPw2PieDQ9M8J+HG06/wBAvri//s+K1uQqm3eOZXT5mYg43Ycn
kNXQfC/9mXwB8J/h3rHg3TNJfUtN13zW1y51iY3d1q7yqVke5lblywJ9AMnAGTXmfg3/AIJ5/Djw
j4i0S9m1/wAbeJdC0G6W90Xwj4g197rRtLmU5jeG32g/Kem9mHPOaAKHiz/lJp4E/wCyd33/AKVi
vnH4uahqWmeDP2/ZtKeSO4bVNJhkaIkMIHREm6Hp5bPn2zX2x8ZP2WvDnxk8d+GfGsniHxT4P8V6
BG1vBq3hTUxZzTW5cObeXKOGjLZJAAJyQSRxWr4X/Z18JeGfEXxP1VlutZT4iTxza3p+qGOW1IWE
w+XGgQEIyschi2fUUAeRftCfD34aad/wT28SabaadpUPhCw8Jm80iSOGPYs/kBreaM/89HkKHcDu
YueTnnx/xJocfxK+K37BkHjSzj1eW60C7vb2C+USiW4j0yCZWcNncfMRW5zyK9d0n/gmv8MNNvLa
2ufEHjrWfBVpdfa7XwDqniF5tAgffvULb7QxAbnDO2cnduzXtXi74FeH/GXxU+Hvj67uL+21bwOt
4umWto8aWri5hEMglUoWOFHy7WXB656UAeEftMaXZ2v7cX7Kupw20UOoT3Gu20t1GgWSSJbNSqMw
5Kje+Aem4+tfXU3+qf8A3TXn/jz4H6F8Q/ib8PfHOo3eow6t4HlvJtOhtZI1glNzEsUnnKyFmAVR
jay89c9K9CZdykHoRigD8oLH/lE34X/7HOP/ANPD19La14T0jxN/wVT0u41Wwgv5NJ+Gv2+y+0Rh
xDcC/MYkUEcMFkfB6jNejRfsReBof2ebD4NrqviE+GLLU11WO7NzB9tMouTchS/k7Nu84xszjvnm
vQV+B+hL8fD8XPteo/8ACSHw/wD8I39l8yP7H9m88T79uzf5m4Yzvxj+HPNAHgs+l2ml/wDBU6zn
s7aK1m1D4YSS3bwqFM7jUNoZ8feO1EGT2UelfGmi2/inT7bxd4q8X2ttrf7Oeg/GLUZPEnh+1Ehu
Llnmx9quVXiW2gk+zsIujMTuUgAj9Rbj4H6Fc/Hq1+LbXeojxJbaA3h1LUSR/YzbmczFyuzf5m44
zvxj+HvWd8Pf2bvCHw78G+N/C0P23WtE8Y6pf6rqttq0iSBnvABNEuxExHjgA5YZ+8aAPL/2s/h1
L8XtU+EOs/D/AMf+FdE+IGjXs2r+FtP8QzJLY61GYVMhSIZZ9iBHEkasUBJG3IYcL8JfiJ4k0v8A
a28N2Xxy+D+m+Evir4j0m803RvGnhbVXlsNTtYAJ5IJLfzW24C5Dy5bO0AKOa9WvP2G/Amq/Bnwx
8OtR1nxRf2/hW4Nx4e8QtqKRaxpJ/hWC4ijQBVHADK3Cr12rjT+Dn7HvhP4ReNG8ZXHiPxh8Q/GC
W7WdrrvjrWm1K5srd8b4oflVUBxydu7lhnDEEA91ooooAKKKKACiiigAooooAKKKKACiiigAoooo
AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArN8ReI9M8I6Df61rV9Bpmk2MLT3N5cuE
jiRRksSaPEXiPTPCOg3+ta1fQaZpNjC09zeXLhI4kUZLEmvLfDvh3VPjVr1h4v8AF9hPpnhWxmW6
8O+FLxCkjupymoXyH/lr/FFAf9Vw7DzcCIAPDvh3VPjVr1h4v8X2E+meFbGZbrw74UvEKSO6nKah
fIf+Wv8AFFAf9Vw7DzcCL2SiigAooooAK8q+Df8AyUX47f8AY523/qPaNXqteAeH/iNpnw28W/G+
8voLzULy88dWtpp+k6bD515f3B8OaOywwpkAnCsxZiqqqszMqgkAHvVzcLa28s7h2SNC7CONpGIA
ycKoJY+wBJ7V53Bosfx28I27+NPCt5o2k/2gLu30O+uyHvLdF/dfboFwoDMS5tnLgbI9/O5F3YfA
Ym8fv4tvtX1O7ljtxb6fpUkwSzsFZR5rCNMCSRyOXkLFR8qbQW3dZQA1FWNVVVCqowFUYAHpXP8A
j7wDo/xI8NzaLrUMjwM6zQ3FvIYri0nQ7o54JB80cqNhlccgj0yK6KigDyzwD4+1jw/4kh8AeP5o
38RMjNo+vJGIrfxBAgyxCj5Y7pF5khHBAMkfybhH6nXO+PvAOj/Ejw3NoutQyPAzrNDcW8hiuLSd
DujngkHzRyo2GVxyCPTIrjvAPj7WPD/iSHwB4/mjfxEyM2j68kYit/EECDLEKPljukXmSEcEAyR/
JuEYB6nRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRVHXLe+u9HvoNMu1sNRk
hdbe6kjEixSEHa5U/eAODjvQTJ8qbSuXqK8f/wCEG+MP/RTtN/8ABBH/APFUf8IN8Yf+inab/wCC
CP8A+KrH2j/kf4f5njf2jX/6BKn/AJT/APlh7BRXj/8Awg3xh/6Kdpv/AIII/wD4qj/hBfjC3B+J
+nKD/Evh+Ike/wB6j2j/AJH+H+Yf2hX/AOgSp/5T/wDlh7BRXklr8N/ipFcxPN8Y/PiVwXi/4Re1
XeoPK5DcZHevW6uMnLdW+47sNiKle/tKMqdv5uXX05ZS/GwUUUVZ2hRRRQAUUUUAFFFFABRRRQAU
UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR
RQAUUUUAFFFFABRRRQAUUUUAFFFFABWb4i8R6Z4R0G/1rWr6DTNJsYWnuby5cJHEijJYk0eIvEem
eEdBv9a1q+g0zSbGFp7m8uXCRxIoyWJNeW+HfDuqfGrXrDxf4vsJ9M8K2My3Xh3wpeIUkd1OU1C+
Q/8ALX+KKA/6rh2Hm4EQAeHfDuqfGrXrDxf4vsJ9M8K2My3Xh3wpeIUkd1OU1C+Q/wDLX+KKA/6r
h2Hm4EXslFFABRRRQAUUVxHjDW9f8QaabL4e32izX/8AaB0/UdUupvPTSQq7pW8lD+9mX5VETMmC
6ljgEEA09Q8caUvig+ErTUYH8VyWMl9HZeW8vkxg7Vkn2D92hY4G4rv2sFyVOPMv2ZdL1rRte+NN
r4i1lfEGtjxnDJdahHbLbxu76DpD7Y4wTtjQMEUEs21F3MzZY+x2Oi6fpt5fXlrY2tte37rJeXMM
KpJcuqBFaRgMuQqqoJzgADoK84+Df/JRfjt/2Odt/wCo9o1AHqtFFFABRRRQAVzvj7wDo/xI8Nza
LrUMjwM6zQ3FvIYri0nQ7o54JB80cqNhlccgj0yK6KigDyzwD4+1jw/4kh8AeP5o38RMjNo+vJGI
rfxBAgyxCj5Y7pF5khHBAMkfybhH6nXO+PvAOj/Ejw3NoutQyPAzrNDcW8hiuLSdDujngkHzRyo2
GVxyCPTIrjvAPj7WPD/iSHwB4/mjfxEyM2j68kYit/EECDLEKPljukXmSEcEAyR/JuEYB6nRRRQA
UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR
RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF
FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWb4i8R6Z4R0G/1rWr6DTNJsYWnuby5cJHEijJYk0e
IvEemeEdBv8AWtavoNM0mxhae5vLlwkcSKMliTXlvh3w7qnxq16w8X+L7CfTPCtjMt14d8KXiFJH
dTlNQvkP/LX+KKA/6rh2Hm4EQAeHfDuqfGrXrDxf4vsJ9M8K2My3Xh3wpeIUkd1OU1C+Q/8ALX+K
KA/6rh2Hm4EXslFFABRRRQAUmccngUtVNV0qy13TLvTtStIL/T7uJoLi1uYxJFNGwwyMp4ZSCQQe
tAHLyapr/iLxpqugP4eksfCEFmYZ9bmvTDPdzyKpC2ixncERSd0rMhDkBAdrEbnhTwno/gbw9ZaF
oGnQaVpNknlwWtuu1VGck+pYkkljkkkkkkk1rdOBwKWgAryr4N/8lF+O3/Y523/qPaNXqteVfBv/
AJKL8dv+xztv/Ue0agD1WiiigAooooAKKKKACud8feAdH+JHhubRdahkeBnWaG4t5DFcWk6HdHPB
IPmjlRsMrjkEemRXRUUAeWeAfH2seH/EkPgDx/NG/iJkZtH15IxFb+IIEGWIUfLHdIvMkI4IBkj+
TcI/U653x94B0f4keG5tF1qGR4GdZobi3kMVxaTod0c8Eg+aOVGwyuOQR6ZFcd4B8fax4f8AEkPg
Dx/NG/iJkZtH15IxFb+IIEGWIUfLHdIvMkI4IBkj+TcIwD1OiiigAooooAKKKKACiiigAooooAKK
KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo
oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig
ArN8ReI9M8I6Df61rV9Bpmk2MLT3N5cuEjiRRksSag1rxloXh3R9Z1TUtXsrPT9GBOo3Ek6hbTCL
JiTn5TsdGweSGXHUV5p4d8O6p8atesPF/i+wn0zwrYzLdeHfCl4hSR3U5TUL5D/y1/iigP8AquHY
ebgRAB4d8O6p8atesPF/i+wn0zwrYzLdeHfCl4hSR3U5TUL5D/y1/iigP+q4dh5uBF7JRRQAUUUU
AFFFFABRRRQAUUUUAFeVfBv/AJKL8dv+xztv/Ue0avVa8q+Df/JRfjt/2Odt/wCo9o1AHqtFFFAB
RRRQAUUUUAFFFFABXO+PvAOj/Ejw3NoutQyPAzrNDcW8hiuLSdDujngkHzRyo2GVxyCPTIroqKAP
LPAPj7WPD/iSHwB4/mjfxEyM2j68kYit/EECDLEKPljukXmSEcEAyR/JuEfqdc74+8A6P8SPDc2i
61DI8DOs0NxbyGK4tJ0O6OeCQfNHKjYZXHII9MiuO8A+PtY8P+JIfAHj+aN/ETIzaPryRiK38QQI
MsQo+WO6ReZIRwQDJH8m4RgHqdFV7TULXUGuFtbmG5NvKYJhDIH8uQAEo2DwwBBweeRVigAooooA
KKKKACiiigAooooAKKKKACsnxbrU/hvwrrWr2um3Gs3On2U11Fptpjzrt0jZlhTP8TkBR7kVrUUA
fLH7Bf7XniX9rbw34w1DxF4LHhZtE1BLWC4tzIbe4DhyYhv582IKu/t+8U4XOK+p6KKACiiviXxl
8OdH/bC/bM8feBviC+oah8P/AIeaNp32fw1BfzWttd3t2hmNzKYmVmKrhQN3GPqCAfbVFfHfxG0H
xJ+wp+xn8U5vD3jO98QRWMzSeFzqUJebQ4LiWKCO3EjyN5yxFyysQOvKkcVwnxG/YT8L/CX9n/WP
ij4f8Q+IoPjZ4f0eTxA/jt9bne4vbqKLzZElVnMTRPtKbduSuAS3OQD7/or87/jd9t/aS+KH7Gcl
zq1/4bfxhoWoXmo3OjTG2nEUlhbzzxRuMlA4DJkHIVzzW1d/Anwv+yH+2Z8CbX4UrqHhjQ/G/wDa
1lrui/2lcXNreCC2EkcjCZ3O8M+c542jGMnIB97UV+fOh/s8+Hv2iv24v2j9K8bXGpX3g7Tjok03
hy1v5rS2vriSzxHJOYWV38sRttG4AFya0fgLen9lj4h/tWeDvD1zfXvgbwFo9n4g0TRNQunnWzZ7
KW4kijZyWCMwAxn+EEnOSQD71or8ffBln4M+JPw7s/GHjP4PftIeMvi5q1udQT4j6HpFyUtp3+eJ
rApdLF5CZGz93yOmBgD3PxB44+Inxn+Ff7MHwu8fv4g8H6z4/wBQvYPFjPC+m6hc2unqxaJ1IDR/
aF8tiQBnOcYOKAP0Pryb4W/HofFfWfinp2l6DLFP4H1mTRFWa5UG/mSIOSOMRqWIUZJ9TjpXG/CP
9ivw58B/H2rXfgXWL7R/h3rOkNp+o+A55Z7q2kuS3/H3HPJMXjfZlCMHIY8jjHzp+x5+zz8P/A/i
j9pvWdE0D7FqXhrV9U8PaVN9tuJPs1gbZWMO15CH5AO5wW96APvL4c654h8S+CdK1PxX4Y/4QzxD
cRlrzQv7Qjv/ALIwYgL58YCSZUBsgfxY7V0lfmF8P9Q1zxh+zD+yJ8G9M8QX/hfSfH8uorrWoaXK
Ibp7K0aSV4I5P4PM3YOOuAORlW9L8efAvw3+wv8AE74PeJvhC2oeG9H8T+K7Pwp4h8PPqU11aahF
chgk5SZ2IlQrkMpGM9MZBAPvKivz50P9nnw9+0V+3F+0fpXja41K+8HacdEmm8OWt/NaW19cSWeI
5JzCyu/liNto3AAuTXdfsY+Gl+Dv7SXx9+EehahqEngLw9/ZF9o2l3109wNPNzA0kqRM5JCkkcE/
wgnJySAfZlFfJf8AwVIWaT9jnxIts4juG1LSxG7DIVvtsOCfxrgvjZ+w/wCHPhZ8FPEHxU8PeI/E
dn8bPDulya5N46Or3Dz6jcQp5sqSxM5i8p9pXYqAAbQcgEEA+8aK+CvGGu337aXxW+DPw613Ur7Q
/AWtfD+Lx54g0jSrk2x1R5WWNLV5FO7ygxJKjqCe4DLteGfhvp37G/7X/wAMvBnw6ub/AE/4d/Ea
y1SO88L3V9Jd29peWkImW5g81mdCw+VvmOfy2gH1f8N/EfinxNpOoXHizwf/AMIXew6jPbW1n/ac
V/8AabVCBFc74wAnmDJ8s/MuOa6yvyl8QTSQf8E1vj1LC2yVPiTeMjYzhhqdqQa779rT9kTwp8A/
2ddS+MfhzVvEcfxk0E2N7J41m1q5lu76Z7iKKTzVZ/L2kSH5VReFUcjIIB9l/FT46W3wx+I3ww8I
SaVLqF1451KewiuFlCJaCKHzWdhglieAAMdTzxz6jX5+/tmfAHwD8Uv2lP2cb/xL4fGoXPjC5n0/
W2W8uIhdW8Np5kUeEkGza7McptJzyTWH+194LsNH+P11qfxm+GHjX4mfAy10S0t/DyeE7i4a20SV
AVme5ijmjO8n/lqzgbSo+cj5QD9HqK+YP2Adc8G6l8LdbtvAXxOu/iJ4Wt9VeTT7PVYJYr7QLeRQ
UsZTK5eRVIba+AD82MgV9P0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF
ABRRRQAVDeXUdjaT3MxKwwo0jsASQoGTwOTwKmooA/Jz9nf4N/tL+Pv2odU+LGoeDP7L8Fa14h/t
q70XxvdyWcEyKzC3P2YBpDNBGw8p3iKqyqe2R+sdFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeVfBv
/kovx2/7HO2/9R7Rq9Vryr4N/wDJRfjt/wBjnbf+o9o1AHqtFFFABRRRQAUUUUAFFFFABRRRQAV4
p+2B4F8dfEb4Janovw5sdFufFUk0U1pc6vdSW72Lo25bi1dFO24UgbGLIASSScbT7XRQB8Af8Evf
DPxb+Der/Eb4dfFbw1rWmTXlyPEVlqd9m4gupmIiu8XSlkkc/wCjtgMSfmJ719/0UUAFFFFABRRR
QAUUUUAFFFFABRRRQAVT1m+k0vR769htZL6W3gkmS1h+/MyqSEX3JGB9auUUEyTaaTseRfs7/GnV
fjNpet3Op6ENINhciGOSPd5coO47Pm/jTA3f7w4HSvXaKKiCcYpSd2cmCo1sPh40q9T2k1vK1r/J
fcFfM/xd+APxM0v43TfFv4Ja/wCG9P8AEmq6ZHpOu6J4xiuH06/jiOYZg8H7xJEHy4HBHcc5+mKK
s7T508Mfsw+IfFnwb+IPhf4yeObvxjrHjt3kvjYSSJYaQu0CKGwikJ2JGwDZIG8gbgcc+XX37M/7
TfjbwEvwi8XfE7wa3wxMa2F14i0yyuf+Ejv7BCAIZFYeQhZBtZgWOOpfJz9uUUAfPvi/9m2/uvjh
8AfEvhyXT7Lwn8N7TUbKezuZpPtLRTWa28AiAQq23aNxZl45GTWl8ZPgfrvxD/aA+CHjnTrvTodJ
8D3OqTajDdSSLPKLm3SKPyVVCrEMpzuZeOmele4UUAeH/CX4H674D/aP+NfxA1C706bRvGx0k6dB
bSSNcRfZbd45POUoFXJYbdrNkdcVQ8J/s56jZ/tCfHPxhr0unXnhP4g6dpunQWUEsn2lUhtWgnEo
KBVDbjtKsxx1xXv9FAHxh4V/Z8/af+Dnhdvhv8PfiN4Huvh5Dvt9L1vxJY3Ta9pNsxOEjWMeRK0Y
PymTr6KAFHb/ABM/ZJ1vXvhX8ObLw54/1F/iX8PrtdR0jxd4lke9e8uCCJ0utxLGOUHGASVAUDIB
B+mKKAPnn4P/AAx+ON78T4/HHxi8caKqWNjJY2HhDwG95FpDs5G66ufPYNLIBkKrKQucgjvgeB/2
ePif8Ovi78W5NN1XwnqHw0+IFxearKLoXMesWl7LAUVFCqYjEGxkk7iOQAeD9S0UAfG9n+xD4ni/
Zh+E/ha18V2fhz4sfDeWS+0bX9PD3FkLhpJC0Tq6KzxOjKrZTIx0YZVtfw7+zv8AGX4rfE/wZ4r+
PXibwi2meC7r+0dI8OeBYboW9ze7cJc3MlxhspzhVGOewLA/WNFAHh/wl+B+u+A/2j/jX8QNQu9O
m0bxsdJOnQW0kjXEX2W3eOTzlKBVyWG3azZHXFHw0+B+u+Df2oPjD8SL2706XQ/GNtpMNhb28khu
Yja25jk81SgUAn7u1myOuK9wooA+S/8AgqRarffsceJLdmZFm1LS4yy9QDewjIrK179nn9pL4neG
h8MvGfxN8If8KvkRLa917SdPuF8R6tZrjME6sfIiMi5VnjJPGcMCwP078T/hZ4X+MvhGfwv4x0v+
2NCnmhnktftEsG54pFkjO+JlYYZVPXnHORXVqoVQBwBwKAPmz44/sua9f634E8bfBnXdP8GeO/BN
j/ZGn22qxvLpd9ppABtLgKC6qMZDKCevfayw/Cf9nn4k6x8a7L4ufG7xJ4f1PxNo1hNpuhaD4Phn
TS9OSXiabdP+8kkdfl5GB6nC7fpqigD4l1b9iXxzf/sh/E74Vx6r4fHiHxP4tuNes7lrif7JHA95
DOFkbyd4fbGwICMMkc45r3H9rj4La38e/wBmzxT8PfD91p9nrWqRWqQz6lI6W6mK5ilbcyI7D5Y2
xhTyR0617TRQB83/ALSnwB8eePpfhR4m+Heq+HrPxn4AvHube28TJOdPuhJAIpA7QjzBgDIwOc9R
VPxt8Mf2jNE8fSeNPhr448L3Umtadaw6z4P8ayX8+j2d3GmHm09ojvjVjnKYXd95snAX6cooA8E/
Zj/Z81/4V61498ceOda0zWfiF47u7e61b+wrVrfTrVYYykUMCsdz43OTI+GbIyMglve6KKACiiig
AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC
iiigAooooAKKKKACvKvg3/yUX47f9jnbf+o9o1eq15V8G/8Akovx2/7HO2/9R7RqAPVaKKKACiii
gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA
CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK
KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo
ooAK8q+Df/JRfjt/2Odt/wCo9o1d/wCLdS1PR/C+r3+i6Uuuava2ks1ppj3H2cXcqqSkXm7W2biA
u7acZ6V8A/sPft5a58ev2iPGvhiy+FbaXH4j1NvEOp30uuF/7Hig06ysdjJ9mXzGaS0THKczYx8h
YgH6KUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF
FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU
UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ
AUUUUAFFFFABRRRQAV5V8JP2bvCHwY8e/Ebxb4ftfK1PxvqSahe5UBYcIMxx+itK00p95cdFFeq0
UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ
AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB
RRRQB//Z</Data></Thumbnail></Binary></metadata>