-
Notifications
You must be signed in to change notification settings - Fork 6
/
main.py
184 lines (153 loc) · 6.59 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import os
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from torch.utils.tensorboard import SummaryWriter
from torch.optim import Adam
from tqdm import tqdm
from torch.optim.lr_scheduler import StepLR
from sklearn.metrics import roc_auc_score
from torch.utils.data import DataLoader
from data import TrainDateSet
import models
import config
def init_seeds(seed=0):
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if seed == 0:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def loss_fn(loss_name):
try:
if "mse" == loss_name.lower():
# 针对回归
return nn.MSELoss()
elif "bce" == loss_name.lower():
# 针对分类
return nn.BCEWithLogitsLoss()
except:
print("损失函数不存在!!!")
def main():
# 初始化
args = config.get_parse()
init_seeds(args.seed)
start_epoch = 0
# 加载数据
print("Preparing data......")
user_feat_dict = np.load('./data/Income/user_feat_dict.npy', allow_pickle=True).item()
item_feat_dict = np.load("./data/Income/item_feat_dict.npy", allow_pickle=True).item()
train_data = pd.read_csv("./data/Income/train_data.csv")
val_data = pd.read_csv("./data/Income/test_data.csv")
# 设备信息
print("Pytorch Version: ", torch.__version__)
if args.use_gpu and torch.cuda.is_available():
device = torch.device('cuda')
print('Using GPU: ', torch.cuda.get_device_name(0))
if args.use_benchmark:
torch.backends.cudnn.benchmark = True
print('Using cudnn.benchmark.')
else:
device = torch.device('cpu')
print('Warning! Using CPU.')
# 设置模型参数
model = getattr(models, args.model)(user_feat_dict, item_feat_dict)
model.to(device)
# 加载checkopint
if args.resume:
print('==> Resuming from checkpoint..')
assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'
checkpoint = torch.load('./checkpoint/{50}_ckpt.pth')
model.load_state_dict(checkpoint['net'])
start_epoch = checkpoint['epoch']
optimizer = Adam(params=model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
scheduler = StepLR(optimizer=optimizer, step_size=30, gamma=0.1)
loss_fun1 = loss_fn("bce")
loss_fun2 = loss_fn("bce")
# 处理数据
train_datasets = TrainDateSet(train_data)
val_datasets = TrainDateSet(val_data)
train_data_loader = DataLoader(dataset=train_datasets, batch_size=args.batch_size, num_workers=args.num_works)
val_data_loader = DataLoader(dataset=val_datasets, batch_size=args.batch_size, num_workers=args.num_works)
writer = SummaryWriter(args.log_dir, comment="mertics")
for epoch in tqdm(range(start_epoch, start_epoch + args.epochs)):
train(model, device, train_data_loader, writer, loss_fun1, loss_fun2, epoch, args, optimizer)
val(model, device, val_data_loader, writer, loss_fun1, loss_fun2, epoch, args)
scheduler.step()
writer.close()
def train(model, device, train_data_loader, writer, loss_fun1, loss_fun2, epoch, args, optimizer):
model.train()
y_train_income_true = []
y_train_income_predict = []
y_train_marry_true = []
y_train_marry_predict = []
total_tain_loss, count_train = 0, 0
for x, y1, y2 in train_data_loader:
x, y1, y2 = x.to(device), y1.to(device), y2.to(device)
predict = model(x)
y_train_income_true += list(y1.squeeze().cpu().numpy())
y_train_marry_true += list(y2.squeeze().cpu().numpy())
y_train_income_predict += list(
predict[0].squeeze().cpu().detach().numpy())
y_train_marry_predict += list(
predict[1].squeeze().cpu().detach().numpy())
loss1 = loss_fun1(predict[0], y1.unsqueeze(1).float())
loss2 = loss_fun2(predict[1], y2.unsqueeze(1).float())
loss = loss1 + loss2
# 梯度更新
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_tain_loss += float(loss)
count_train += 1
y1_auc = roc_auc_score(y_train_income_true, y_train_income_predict)
y2_auc = roc_auc_score(y_train_marry_true, y_train_marry_predict)
train_loss_value = total_tain_loss / count_train
print("\nEpoch %d train loss is %.3f, y1_auc is %.3f and y2_auc is %.3f" % (epoch + 1, train_loss_value,
y1_auc, y2_auc))
writer.add_scalar("Train loss", train_loss_value, global_step=epoch + 1)
writer.add_scalar("Train_y1_auc", y1_auc, global_step=epoch + 1)
writer.add_scalar("Train_y2_auc", y2_auc, global_step=epoch + 1)
def val(model, device, val_data_loader, writer, loss_fun1, loss_fun2, epoch, args):
total_val_loss = 0
model.eval()
count_eval = 0
y_val_income_true = []
y_val_marry_true = []
y_val_income_predict = []
y_val_marry_predict = []
for x, y1, y2 in val_data_loader:
x, y1, y2 = x.to(device), y1.to(device), y2.to(device)
predict = model(x)
y_val_income_true += list(y1.squeeze().cpu().numpy())
y_val_marry_true += list(y2.squeeze().cpu().numpy())
y_val_income_predict += list(
predict[0].squeeze().cpu().detach().numpy())
y_val_marry_predict += list(
predict[1].squeeze().cpu().detach().numpy())
loss_1 = loss_fun1(predict[0], y1.unsqueeze(1).float())
loss_2 = loss_fun2(predict[1], y2.unsqueeze(1).float())
loss = loss_1 + loss_2
total_val_loss += float(loss)
count_eval += 1
y1_val_auc = roc_auc_score(y_val_income_true, y_val_income_predict)
y2_val_auc = roc_auc_score(y_val_marry_true, y_val_marry_predict)
eval_loss_value = total_val_loss / count_eval
print("Epoch %d val loss is %.3f, y1_auc is %.3f and y2_auc is %.3f" % (epoch + 1, eval_loss_value,
y1_val_auc, y2_val_auc))
writer.add_scalar("Val loss", eval_loss_value, global_step=epoch + 1)
writer.add_scalar("Val_y1_auc", y1_val_auc, global_step=epoch + 1)
writer.add_scalar("Val_y2_auc", y2_val_auc, global_step=epoch + 1)
if epoch % args.checkpoint == 0:
print('Saving..')
state = {
'net': model.state_dict(),
'epoch': epoch,
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, './checkpoint/{}_ckpt.pth'.format(epoch))
if __name__ == "__main__":
main()