diff --git a/src/Subsampling/benchmark/choose_n_farthest_points.cpp b/src/Subsampling/benchmark/choose_n_farthest_points.cpp index c9c453284c..262f8d6f8b 100644 --- a/src/Subsampling/benchmark/choose_n_farthest_points.cpp +++ b/src/Subsampling/benchmark/choose_n_farthest_points.cpp @@ -76,7 +76,16 @@ int main(int argc, char**argv) { << " vs metric " << std::chrono::duration_cast((time_stop2 - time_start2)).count() << " (Boost version " << BOOST_VERSION << ")\n"; if (dists != dists2 || results != results2) { + // Note that with many points, it often happens that 2 points with the same distance are swapped in the output. std::cerr << "Results differ\n"; +#ifdef LOG_DIFF + std::ofstream log_gen("log_gen"); + std::ofstream log_met("log_met"); + for(std::size_t i = 0; i < results.size(); ++i){ + log_gen << dists2[i] << '\t' << results2[i] << '\n'; + log_met << dists [i] << '\t' << results [i] << '\n'; + } +#endif return -1; } #endif diff --git a/src/Subsampling/include/gudhi/choose_n_farthest_points.h b/src/Subsampling/include/gudhi/choose_n_farthest_points.h index 8b57a23c70..eaf91e676d 100644 --- a/src/Subsampling/include/gudhi/choose_n_farthest_points.h +++ b/src/Subsampling/include/gudhi/choose_n_farthest_points.h @@ -320,7 +320,7 @@ void choose_n_farthest_points_metric(Distance dist_, auto handle_neighbor_neighbors = [&](std::size_t ngb) { auto& ngb_info = landmarks[ngb]; - std::remove_if(ngb_info.neighbors.begin(), ngb_info.neighbors.end(), [&](auto near_){ + auto it = std::remove_if(ngb_info.neighbors.begin(), ngb_info.neighbors.end(), [&](auto near_){ std::size_t near = near_.first; FT d = near_.second; // Conservative 3 * radius: we could use the old radii of ngb and near, but not the new ones. @@ -328,6 +328,7 @@ void choose_n_farthest_points_metric(Distance dist_, // Here it is safe to use the new radii. return d >= max_dist(ngb_info.radius, landmarks[near].radius); }); + ngb_info.neighbors.erase(it, ngb_info.neighbors.end()); }; // First update the Voronoi diagram, so we can compute all the updated // radii before pruning neighbor lists. The main drawback is that we have