forked from alexhernandezgarcia/ActiveLearningPipeline
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_comet_results.py
96 lines (87 loc) · 2.63 KB
/
get_comet_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
"""
Script to retrieve results from Comet.ml
"""
from comet_ml import Experiment
from comet_ml.api import API
from tqdm import tqdm
from argparse import ArgumentParser
from pathlib import Path
import numpy as np
import pandas as pd
def add_args(parser):
"""
Adds command-line arguments to parser
Returns:
argparse.Namespace: the parsed arguments
"""
# YAML config
parser.add_argument(
"--workspace",
default="alexhernandezgarcia",
type=str,
help="Comet workspace",
)
parser.add_argument(
"--project",
default="gflownet-words",
type=str,
help="Comet project",
)
parser.add_argument(
"--root_dir",
default=None,
type=str,
help="Root directory with results",
)
parser.add_argument(
"--output_csv",
default=None,
type=str,
help="Output CSV",
)
parser.add_argument("--save_each_csv", action="store_true")
return parser
def metrics2df(metrics_dict):
metric_names, steps = zip(*[(el["metricName"], el["step"]) for el in metrics_dict])
metric_names = np.unique(metric_names).tolist()
steps = np.asarray(steps)
steps = np.unique(steps[steps != None]).tolist()
columns = metric_names + ["step", "timestamp"]
data_dict = {k: np.empty(np.max(steps) + 1) for k in metric_names}
for d in metrics_dict:
if d["step"] is not None:
data_dict[d["metricName"]][d["step"]] = d["metricValue"]
df = pd.DataFrame.from_dict(data_dict)
df.index.name = "step"
return df
def main(args):
comet_api = API()
comet_files = Path(args.root_dir).glob("**/comet.url")
exp_dict = {}
df_list = []
df_keys = []
for path in comet_files:
print(f"Retrieving data from {path}")
with open(path, "r") as f:
url = f.readline()
key = url.split("/")[-1].strip()
exp_dict.update({key: {"path": path}})
exp = comet_api.get_experiment(
workspace=args.workspace, project_name=args.project, experiment=key
)
metrics = exp.get_metrics()
df = metrics2df(metrics)
df["path"] = path
df_list.append(df)
df_keys.append(path.parent)
if args.save_each_csv:
df.to_csv(path.parent / "comet.csv")
df = pd.concat(df_list, keys=df_keys, names=["path", "step"])
if args.output_csv:
df.to_csv(args.output_csv)
if __name__ == "__main__":
parser = ArgumentParser()
parser = add_args(parser)
args = parser.parse_args()
print("Args:\n" + "\n".join([f" {k:20}: {v}" for k, v in vars(args).items()]))
main(args)