forked from google/tirg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_retrieval.py
133 lines (121 loc) · 4.62 KB
/
test_retrieval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Copyright 2018 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Evaluates the retrieval model."""
import numpy as np
import torch
from tqdm import tqdm as tqdm
def test(opt, model, testset):
"""Tests a model over the given testset."""
model.eval()
test_queries = testset.get_test_queries()
all_imgs = []
all_captions = []
all_queries = []
all_target_captions = []
if test_queries:
# compute test query features
imgs = []
mods = []
for t in tqdm(test_queries):
imgs += [testset.get_img(t['source_img_id'])]
mods += [t['mod']['str']]
if len(imgs) >= opt.batch_size or t is test_queries[-1]:
if 'torch' not in str(type(imgs[0])):
imgs = [torch.from_numpy(d).float() for d in imgs]
imgs = torch.stack(imgs).float()
imgs = torch.autograd.Variable(imgs).cuda()
f = model.compose_img_text(imgs, mods).data.cpu().numpy()
all_queries += [f]
imgs = []
mods = []
all_queries = np.concatenate(all_queries)
all_target_captions = [t['target_caption'] for t in test_queries]
# compute all image features
imgs = []
for i in tqdm(range(len(testset.imgs))):
imgs += [testset.get_img(i)]
if len(imgs) >= opt.batch_size or i == len(testset.imgs) - 1:
if 'torch' not in str(type(imgs[0])):
imgs = [torch.from_numpy(d).float() for d in imgs]
imgs = torch.stack(imgs).float()
imgs = torch.autograd.Variable(imgs).cuda()
imgs = model.extract_img_feature(imgs).data.cpu().numpy()
all_imgs += [imgs]
imgs = []
all_imgs = np.concatenate(all_imgs)
all_captions = [img['captions'][0] for img in testset.imgs]
else:
# use training queries to approximate training retrieval performance
imgs0 = []
imgs = []
mods = []
for i in range(10000):
item = testset[i]
imgs += [item['source_img_data']]
mods += [item['mod']['str']]
if len(imgs) > opt.batch_size or i == 9999:
imgs = torch.stack(imgs).float()
imgs = torch.autograd.Variable(imgs)
f = model.compose_img_text(imgs.cuda(), mods).data.cpu().numpy()
all_queries += [f]
imgs = []
mods = []
imgs0 += [item['target_img_data']]
if len(imgs0) > opt.batch_size or i == 9999:
imgs0 = torch.stack(imgs0).float()
imgs0 = torch.autograd.Variable(imgs0)
imgs0 = model.extract_img_feature(imgs0.cuda()).data.cpu().numpy()
all_imgs += [imgs0]
imgs0 = []
all_captions += [item['target_caption']]
all_target_captions += [item['target_caption']]
all_imgs = np.concatenate(all_imgs)
all_queries = np.concatenate(all_queries)
# feature normalization
for i in range(all_queries.shape[0]):
all_queries[i, :] /= np.linalg.norm(all_queries[i, :])
for i in range(all_imgs.shape[0]):
all_imgs[i, :] /= np.linalg.norm(all_imgs[i, :])
# match test queries to target images, get nearest neighbors
nn_result = []
for i in tqdm(range(all_queries.shape[0])):
sims = all_queries[i:(i+1), :].dot(all_imgs.T)
if test_queries:
sims[0, test_queries[i]['source_img_id']] = -10e10 # remove query image
nn_result.append(np.argsort(-sims[0, :])[:110])
# compute recalls
out = []
nn_result = [[all_captions[nn] for nn in nns] for nns in nn_result]
for k in [1, 5, 10, 50, 100]:
r = 0.0
for i, nns in enumerate(nn_result):
if all_target_captions[i] in nns[:k]:
r += 1
r /= len(nn_result)
out += [('recall_top' + str(k) + '_correct_composition', r)]
if opt.dataset == 'mitstates':
r = 0.0
for i, nns in enumerate(nn_result):
if all_target_captions[i].split()[0] in [c.split()[0] for c in nns[:k]]:
r += 1
r /= len(nn_result)
out += [('recall_top' + str(k) + '_correct_adj', r)]
r = 0.0
for i, nns in enumerate(nn_result):
if all_target_captions[i].split()[1] in [c.split()[1] for c in nns[:k]]:
r += 1
r /= len(nn_result)
out += [('recall_top' + str(k) + '_correct_noun', r)]
return out