forked from google/tirg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
297 lines (263 loc) · 10.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# Copyright 2019 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Main method to train the model."""
#!/usr/bin/python
import argparse
import sys
import time
import datasets
import img_text_composition_models
import numpy as np
from tensorboardX import SummaryWriter
import test_retrieval
import torch
import torch.utils.data
import torchvision
from tqdm import tqdm as tqdm
torch.set_num_threads(3)
def parse_opt():
"""Parses the input arguments."""
parser = argparse.ArgumentParser()
parser.add_argument('-f', type=str, default='')
parser.add_argument('--comment', type=str, default='test_notebook')
parser.add_argument('--dataset', type=str, default='css3d')
parser.add_argument(
'--dataset_path', type=str, default='../imgcomsearch/CSSDataset/output')
parser.add_argument('--model', type=str, default='tirg')
parser.add_argument('--embed_dim', type=int, default=512)
parser.add_argument('--learning_rate', type=float, default=1e-2)
parser.add_argument(
'--learning_rate_decay_frequency', type=int, default=9999999)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--weight_decay', type=float, default=1e-6)
parser.add_argument('--num_iters', type=int, default=210000)
parser.add_argument('--loss', type=str, default='soft_triplet')
parser.add_argument('--loader_num_workers', type=int, default=4)
args = parser.parse_args()
return args
def load_dataset(opt):
"""Loads the input datasets."""
print('Reading dataset ', opt.dataset)
if opt.dataset == 'css3d':
trainset = datasets.CSSDataset(
path=opt.dataset_path,
split='train',
transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
]))
testset = datasets.CSSDataset(
path=opt.dataset_path,
split='test',
transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
]))
elif opt.dataset == 'fashion200k':
trainset = datasets.Fashion200k(
path=opt.dataset_path,
split='train',
transform=torchvision.transforms.Compose([
torchvision.transforms.Resize(224),
torchvision.transforms.CenterCrop(224),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
]))
testset = datasets.Fashion200k(
path=opt.dataset_path,
split='test',
transform=torchvision.transforms.Compose([
torchvision.transforms.Resize(224),
torchvision.transforms.CenterCrop(224),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
]))
elif opt.dataset == 'mitstates':
trainset = datasets.MITStates(
path=opt.dataset_path,
split='train',
transform=torchvision.transforms.Compose([
torchvision.transforms.Resize(224),
torchvision.transforms.CenterCrop(224),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
]))
testset = datasets.MITStates(
path=opt.dataset_path,
split='test',
transform=torchvision.transforms.Compose([
torchvision.transforms.Resize(224),
torchvision.transforms.CenterCrop(224),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
]))
else:
print('Invalid dataset', opt.dataset)
sys.exit()
print('trainset size:', len(trainset))
print('testset size:', len(testset))
return trainset, testset
def create_model_and_optimizer(opt, texts):
"""Builds the model and related optimizer."""
print('Creating model and optimizer for', opt.model)
if opt.model == 'imgonly':
model = img_text_composition_models.SimpleModelImageOnly(
texts, embed_dim=opt.embed_dim)
elif opt.model == 'textonly':
model = img_text_composition_models.SimpleModelTextOnly(
texts, embed_dim=opt.embed_dim)
elif opt.model == 'concat':
model = img_text_composition_models.Concat(texts, embed_dim=opt.embed_dim)
elif opt.model == 'tirg':
model = img_text_composition_models.TIRG(texts, embed_dim=opt.embed_dim)
elif opt.model == 'tirg_lastconv':
model = img_text_composition_models.TIRGLastConv(
texts, embed_dim=opt.embed_dim)
else:
print('Invalid model', opt.model)
print('available: imgonly, textonly, concat, tirg or tirg_lastconv')
sys.exit()
model = model.cuda()
# create optimizer
params = []
# low learning rate for pretrained layers on real image datasets
if opt.dataset != 'css3d':
params.append({
'params': [p for p in model.img_model.fc.parameters()],
'lr': opt.learning_rate
})
params.append({
'params': [p for p in model.img_model.parameters()],
'lr': 0.1 * opt.learning_rate
})
params.append({'params': [p for p in model.parameters()]})
for _, p1 in enumerate(params): # remove duplicated params
for _, p2 in enumerate(params):
if p1 is not p2:
for p11 in p1['params']:
for j, p22 in enumerate(p2['params']):
if p11 is p22:
p2['params'][j] = torch.tensor(0.0, requires_grad=True)
optimizer = torch.optim.SGD(
params, lr=opt.learning_rate, momentum=0.9, weight_decay=opt.weight_decay)
return model, optimizer
def train_loop(opt, logger, trainset, testset, model, optimizer):
"""Function for train loop"""
print('Begin training')
losses_tracking = {}
it = 0
epoch = -1
tic = time.time()
while it < opt.num_iters:
epoch += 1
# show/log stats
print('It', it, 'epoch', epoch, 'Elapsed time', round(time.time() - tic, 4), opt.comment)
tic = time.time()
for loss_name in losses_tracking:
avg_loss = np.mean(losses_tracking[loss_name][-len(trainloader):])
print(' Loss', loss_name, round(avg_loss, 4))
logger.add_scalar(loss_name, avg_loss, it)
logger.add_scalar('learning_rate', optimizer.param_groups[0]['lr'], it)
# test
if epoch % 3 == 1:
tests = []
for name, dataset in [('train', trainset), ('test', testset)]:
t = test_retrieval.test(opt, model, dataset)
tests += [(name + ' ' + metric_name, metric_value)
for metric_name, metric_value in t]
for metric_name, metric_value in tests:
logger.add_scalar(metric_name, metric_value, it)
print(' ', metric_name, round(metric_value, 4))
# save checkpoint
torch.save({
'it': it,
'opt': opt,
'model_state_dict': model.state_dict(),
},
logger.file_writer.get_logdir() + '/latest_checkpoint.pth')
# run trainning for 1 epoch
model.train()
trainloader = trainset.get_loader(
batch_size=opt.batch_size,
shuffle=True,
drop_last=True,
num_workers=opt.loader_num_workers)
def training_1_iter(data):
assert type(data) is list
img1 = np.stack([d['source_img_data'] for d in data])
img1 = torch.from_numpy(img1).float()
img1 = torch.autograd.Variable(img1).cuda()
img2 = np.stack([d['target_img_data'] for d in data])
img2 = torch.from_numpy(img2).float()
img2 = torch.autograd.Variable(img2).cuda()
mods = [str(d['mod']['str']) for d in data]
# compute loss
losses = []
if opt.loss == 'soft_triplet':
loss_value = model.compute_loss(
img1, mods, img2, soft_triplet_loss=True)
elif opt.loss == 'batch_based_classification':
loss_value = model.compute_loss(
img1, mods, img2, soft_triplet_loss=False)
else:
print('Invalid loss function', opt.loss)
sys.exit()
loss_name = opt.loss
loss_weight = 1.0
losses += [(loss_name, loss_weight, loss_value)]
total_loss = sum([
loss_weight * loss_value
for loss_name, loss_weight, loss_value in losses
])
assert not torch.isnan(total_loss)
losses += [('total training loss', None, total_loss)]
# track losses
for loss_name, loss_weight, loss_value in losses:
if loss_name not in losses_tracking:
losses_tracking[loss_name] = []
losses_tracking[loss_name].append(float(loss_value))
# gradient descend
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
for data in tqdm(trainloader, desc='Training for epoch ' + str(epoch)):
it += 1
training_1_iter(data)
# decay learing rate
if it >= opt.learning_rate_decay_frequency and it % opt.learning_rate_decay_frequency == 0:
for g in optimizer.param_groups:
g['lr'] *= 0.1
print('Finished training')
def main():
opt = parse_opt()
print('Arguments:')
for k in opt.__dict__.keys():
print(' ', k, ':', str(opt.__dict__[k]))
logger = SummaryWriter(comment=opt.comment)
print('Log files saved to', logger.file_writer.get_logdir())
for k in opt.__dict__.keys():
logger.add_text(k, str(opt.__dict__[k]))
trainset, testset = load_dataset(opt)
model, optimizer = create_model_and_optimizer(opt, trainset.get_all_texts())
train_loop(opt, logger, trainset, testset, model, optimizer)
logger.close()
if __name__ == '__main__':
main()