This repository contains all of our code for Continual Variational Dropout: A View of Auxiliary Local Variables in Continual Learning.
To download the Omniglot dataset.
$ python3 main.py --experiment [dataset] --approach [approach] --film --KL_weight [KL_weight] --prior_var [prior_var]
To perform the CVD on split-mnist, enter the following command:
$ python3 main.py --experiment split_mnist --approach gvclf_vd --film --KL_weight 0.01
To perform CVD on split-CIFAR100, enter the following command:
$ python3 main.py --experiment split_cifar100 --approach gvclf_vd --film --KL_weight 0.01 --conv_Dropout --prior_var 1
Our implementation is based on yolky/gvcl.
@article{hainam2023continual,
title={Continual variational dropout: a view of auxiliary local variables in continual learning},
author={Hai, Nam Le and Nguyen, Trang and Van, Linh Ngo and Nguyen, Thien Huu and Than, Khoat},
journal={Machine Learning},
pages={1--43},
year={2023},
publisher={Springer}
}