-
Notifications
You must be signed in to change notification settings - Fork 0
/
TC_iL.mod
114 lines (89 loc) · 2.17 KB
/
TC_iL.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
TITLE high threshold calcium current (L-current)
: 2019: From ModelDB, accession: 3808
: Based on the model by McCormick & Huguenard, J Neurophysiol, 1992
: and errata in https://huguenardlab.stanford.edu/reprints/Errata_thalamic_cell_models.pdf
: Modified cai by Elisabetta Iavarone @ Blue Brain Project
: See PARAMETER section for references
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX TC_iL
USEION cal1 READ cal1i,cal1o WRITE ical1
USEION cal2 READ cal2i,cal2o WRITE ical2
RANGE pcabar, m_inf, tau_m
GLOBAL beta
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(molar) = (1/liter)
(mM) = (millimolar)
FARADAY = (faraday) (coulomb)
R = 8.314 (volt-coul/degC)
}
PARAMETER {
v (mV)
celsius (degC)
dt (ms)
cal1i = 0.5E-4 (mM) : Value from Amarillo et al., J Neurophysiol, 2014
cal1o = 2 (mM)
cal2i = 0.5E-4 (mM) : Value from Amarillo et al., J Neurophysiol, 2014
cal2o = 2 (mM)
pcabar= 1e-4 (cm/s)
beta = 1
}
STATE {
m
}
ASSIGNED {
ical1 (mA/cm2)
ical2 (mA/cm2)
i_rec (mA/cm2)
tau_m (ms)
m_inf
tcorr
}
BREAKPOINT {
SOLVE states METHOD cnexp
ical1 = beta * pcabar * m*m * ghk(v,cal1i,cal1o)
ical2 = (1-beta) * pcabar * m*m * ghk(v,cal2i,cal2o)
}
DERIVATIVE states {
rates(v)
m'= (m_inf-m) / tau_m
}
INITIAL {
tcorr = 3^((celsius-23.5)/10)
rates(v)
m = m_inf
}
UNITSOFF
FUNCTION ghk( v(mV), ci(mM), co(mM)) (millicoul/cm3) {
LOCAL z, eci, eco
z = v * (.001) * 2 *FARADAY / (R*(celsius+273.15))
eco = co*efun(z)
eci = ci*efun(-z)
:high cao charge moves inward
:negative potential charge moves inward
ghk = (.001)*2*FARADAY*(eci - eco)
}
FUNCTION efun(z) {
if (fabs(z) < 1e-4) {
efun = 1 - z/2
}else{
efun = z/(exp(z) - 1)
}
}
PROCEDURE rates(v(mV)) { LOCAL a,b
a = 1.6 / (1+ exp(-0.072*(v-5)))
b = 0.02 * vtrap( -(v-1.31), 5.36)
tau_m = 1/(a+b) / tcorr
m_inf = 1/(1+exp((v+10)/-10))
}
FUNCTION vtrap(x,c) {
: Traps for 0 in denominator of rate equations
if (fabs(x/c) < 1e-6) {
vtrap = c + x/2 }
else {
vtrap = x / (1-exp(-x/c)) }
}
UNITSON