We take the checkpoint video-joint_r50.pth
as an example. We have listed all the evaluation datasets in the config files.
For the swin-L backbone, please change the --config-file
and MODEL.WEIGHTS
arguments.
python3 projects/UniRef/train_net.py --config-file projects/UniRef/configs/eval/r50/eval_rec_r50.yaml --num-gpus 8 --eval-only MODEL.WEIGHTS video-joint_r50.pth
1-shot evaluation.
python3 projects/UniRef/train_net.py --config-file projects/UniRef/configs/eval/r50/eval_fss_r50.yaml --num-gpus 8 --eval-only MODEL.WEIGHTS video-joint_r50.pth
5-shot evaluation.
python3 projects/UniRef/train_net.py --config-file projects/UniRef/configs/eval/r50/eval_fss_r50.yaml --num-gpus 8 --eval-only MODEL.WEIGHTS video-joint_r50.pth TASK.FSS.NSHOT 5
python3 projects/UniRef/train_net.py --config-file projects/UniRef/configs/eval/r50/eval_rvos_r50.yaml --num-gpus 8 --eval-only MODEL.WEIGHTS video-joint_r50.pth
- Ref-Youtube-VOS
Run the following commands. Then, submit the submission.zip
to evaluation server.
cd /path/to/output
mv refytvos Annotations
zip -q -r submission.zip Annotations
- Ref-DAVIS
Run the following commands. The final results are the average metric scores across the 4 splits.
cd external/davis2017-evaluation/
python3 evaluation_method.py --results_path /path/to/output/refdavis/refdavis-val-0
python3 evaluation_method.py --results_path /path/to/output/refdavis/refdavis-val-1
python3 evaluation_method.py --results_path /path/to/output/refdavis/refdavis-val-2
python3 evaluation_method.py --results_path /path/to/output/refdavis/refdavis-val-3
python3 projects/UniRef/train_net.py --config-file projects/UniRef/configs/eval/r50/eval_vos_r50.yaml --num-gpus 8 --eval-only MODEL.WEIGHTS video-joint_r50.pth
- Youtube-VOS-18
Run the following commands. Then, submit the submission.zip
to evaluation server.
cd /path/to/output
mv ytbvos18 Annotations
zip -q -r submission.zip Annotations
- Youtube-VOS-19
Run the following commands. Then, submit the submission.zip
to evaluation server.
cd /path/to/output
mv ytbvos19 Annotations
zip -q -r submission.zip Annotations
- DAVIS17
cd external/davis2017-evaluation
python3 evaluation_method.py --task semi-supervised --results_path /path/to/output/davis17
- LVOS
cd external/lvos-evaluation
python3 evaluation_method.py --results_path /path/to/output/lvos-vos
- MOSE
Run the following commands. Then, submit the submission.zip
to evaluation server.
cd /path/to/output/mose
zip -q -r submission.zip *