-
Notifications
You must be signed in to change notification settings - Fork 148
/
LogisticClassifier.py
142 lines (114 loc) · 4.34 KB
/
LogisticClassifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import math
import numpy as np
class Logit(object):
"""
logistic regression using gradient descent
"""
def __init__(self, learning_rate = 0.01, iterations = 100, verbose = True,
tolerance = 0, l2 = 0, intercept = True):
"""
:param learning_rate: learning rate constant
:param iterations: how many epochs
:param tolerance: the error value in which to stop training
:param intercept: whether to fit an intercept
:param verbose: whether to spit out error rates while training
:param l2: L2 regularization term
"""
self.learning_rate = learning_rate
self.iterations = iterations
self.tolerance = tolerance
self.intercept = intercept
self.verbose = verbose
self.l2 = l2
self.theta = None
self.mean = []
self.std = []
def sigmoid(self, x):
"""
Typical sigmoid function created from input vector x
:param x: input vector
:return: sigmoided vector
"""
return 1 / (1 + np.exp(-x))
def fit(self, X, y):
"""
Gradient descent, loops over theta and updates to
take steps in direction of steepest decrease of J.
:input x: must be numpy array
:input y: must be numpy vector of 0 and 1
:return: value of theta that minimizes J(theta) and J_history
"""
if self.intercept:
intercept = np.ones((np.shape(X)[0],1))
X = np.concatenate((intercept, X), 1)
num_examples, num_features = np.shape(X)
# initialize theta to 1
self.theta = np.ones(num_features)
for i in range(self.iterations):
# make predictions
predicted = self.sigmoid(np.dot(X, self.theta.T))
# update theta with gradient descent
self.theta = (self.theta * (1 - (self.learning_rate * self.l2))) - self.learning_rate * np.dot((predicted - y).T, X)
# sum of squares cost
error = predicted - y
cost = np.sum(error**2) / (2 * num_examples)
if i % (self.iterations/10) == 0 and self.verbose == True:
print 'iteration:', i
print 'theta:', self.theta
print 'cost:', cost
if cost < self.tolerance:
return self.theta
break
return self.theta
def predict(self, X, labels):
"""
Make linear prediction based on cost and gradient descent
:param X: new data to make predictions on
:param labels: boolean
:return: return prediction
"""
if self.intercept:
intercept = np.ones((np.shape(X)[0],1))
X = np.concatenate((intercept, X), 1)
num_examples, num_features = np.shape(X)
prediction = []
for sample in range(num_examples):
yhat = 0
for value in range(num_features):
yhat += X[sample, value] * self.theta[value]
pred = self.sigmoid(yhat)
if labels:
if pred > 0.5:
prediction.append(int(1))
else:
prediction.append(int(0))
else:
prediction.append(yhat)
return prediction
def demo():
from sklearn.cross_validation import train_test_split
from sklearn.metrics import confusion_matrix, classification_report
# initialize linear regression parameters
max_iterations = 50000
learning_rate = 0.0001
l2 = 1.0
lgit = Logit(learning_rate = learning_rate, iterations = max_iterations,
verbose = True, tolerance = 0.001, l2 = l2)
data = np.loadtxt('Data/ionosphere.csv', delimiter = ',')
X = data[:, 1:]
y = data[:, 0]
# scale data
max = np.amax(X)
X /= max
prediction = []
correct = []
for i in range(0,10):
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.1)
# fit the reg
lgit.fit(X = X_train, y = y_train)
# make a predictions
prediction.append(lgit.predict(X_test, labels = True))
correct.append(y_test.tolist())
print classification_report(np.array(correct), np.array(prediction))
if __name__ == '__main__':
demo()