-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmaxsum.py
123 lines (96 loc) · 3.87 KB
/
maxsum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
'''
Graph implementation and message passing/computation for max-product algorithm.
'''
import code # code.interact(local=dict(globals(), **locals()))
import logging
import signal
from factorgraph import Graph
from factorgraph import RV
from factorgraph import Factor as bpFactor
from factorgraph import divide_safezero
# 3rd party
import numpy as np
logger = logging.getLogger(__name__)
# Settings
# Use this to turn all debugging on or off. Intended use: keep on when you're
# trying stuff out. Once you know stuff works, turn off for speed. Can also
# specify when creating each instance, but this global switch is provided for
# convenience.
DEBUG_DEFAULT = True
# This is the maximum number of iterations that we let loopy belief propagation
# run before cutting it off.
LBP_MAX_ITERS = 50
# Otherwise we'd just make some kinda class to do this anyway.
E_STOP = False
##### classes
class mpGraph(Graph):
def __init__(self, debug=DEBUG_DEFAULT):
super(mpGraph, self).__init__()
# add now
self.debug = debug
self._rvs = {}
self._factors = []
# def rv(self, name, n_opts, labels=[], meta={}, debug=DEBUG_DEFAULT):
# rv = RV(name, n_opts, labels, meta, debug)
# self.add_rv(rv)
# return rv
def factor(self, rvs, name='', potential=None, meta={},
debug=DEBUG_DEFAULT):
# Look up RVs if needed.
for i in range(len(rvs)):
if debug:
assert type(rvs[i]) in [str, unicode, RV]
if type(rvs[i]) in [str, unicode]:
rvs[i] = self._rvs[rvs[i]]
# This is just a coding sanity check.
assert type(rvs[i]) is RV
f = Factor(rvs, name, potential, meta, debug)
self.add_factor(f)
return f
class Factor(bpFactor):
def recompute_outgoing(self, normalize=False):
"""message need to be computed in max sum version"""
# Good old safety.
if self.debug:
assert self._outgoing is not None, 'must call init_lbp() first'
# Save old for convergence check.
old_outgoing = self._outgoing[:]
# (Product:) Multiply RV messages into "belief".
incoming = []
belief = self._potential.copy()
for i, rv in enumerate(self._rvs):
m = rv.get_outgoing_for(self)
if self.debug:
assert m.shape == (rv.n_opts,)
# Reshape into the correct axis (for combining). For example, if
# our incoming message (And thus rv.n_opts) has length 3, our
# belief has 5 dimensions, and this is the 2nd (of 5) dimension(s),
# then we want the shape of our message to be (1, 3, 1, 1, 1),
# which means we'll use [1, -1, 1, 1, 1] to project our (3,1) array
# into the correct dimension.
#
# Thanks to stackoverflow:
# https://stackoverflow.com/questions/30031828/multiply-numpy-
# ndarray-with-1d-array-along-a-given-axis
proj = np.ones(len(belief.shape), int)
proj[i] = -1
m_proj = m.reshape(proj)
incoming += [m_proj]
# Combine to save as we go
belief *= m_proj
# Divide out individual belief and (Sum:) add for marginal.
convg = True
all_idx = range(len(belief.shape))
for i, rv in enumerate(self._rvs):
rv_belief = divide_safezero(belief, incoming[i])
axes = tuple(all_idx[:i] + all_idx[i+1:])
o = rv_belief.max(axis=axes)
if self.debug:
assert self._outgoing[i].shape == (rv.n_opts, )
if normalize:
o = divide_safezero(o, sum(o))
self._outgoing[i] = o
convg = convg and \
sum(np.isclose(old_outgoing[i], self._outgoing[i])) == \
rv.n_opts
return convg