-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvector2streams.py
149 lines (124 loc) · 5.16 KB
/
vector2streams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
@author: dcortex
New: python vector2streams.py minc_RGB seeds_txt img_ref stream_name
"""
import numpy as np
import nibabel as nib
from dipy.io.image import load_nifti
import matplotlib.pyplot as plt
def get_tck_list(segments):
"""
Receives the flat list of segments of all streamlines
Returns a list of lists. Each nested list is a streamline
"""
lines = []
current_line = []
for s in segments:
if current_line==[]:
current_line.append(s[0])
current_line.append(s[1])
continue
if np.array_equal(s[0], current_line[-1]):
current_line.append(s[1])
else:
lines.append(np.array(current_line))
current_line = []
lines.append(np.array(current_line))
return lines
def vectorfield2streams_2d(x, y, gX, gY, seeds, slice_n, side= 'l',
start_line='outline'):
""""
Returns list of ndarrays (streams in 2D)
"""
if start_line=='outline': int_dir = 'forward'
elif start_line=='inline': int_dir = 'backward'
streams = []
fig = plt.figure()
for seed in seeds:
strm = plt.streamplot(x.T[0], y[0],
gX[:,:,slice_n].T, gY[:,:, slice_n].T,
linewidth=1, density=20,
minlength=0.01,
start_points=seed.reshape([1,2]),
integration_direction=int_dir # 'forward','backward','both'
)
segments = strm.lines.get_segments()
lines = get_tck_list(segments)
streams.append(lines[0])
plt.close(fig)
return streams
if __name__ == "__main__":
import argparse
import subprocess
from os.path import dirname, isdir
from dipy.io.streamline import load_tractogram, save_tractogram
from dipy.io.stateful_tractogram import Space, StatefulTractogram, Origin
parser = argparse.ArgumentParser(
description='Creates streamlines from the given vector field.')
parser.add_argument('minc_RGB', type=str,
help='vector space created by mincLaplace (nifti)')
parser.add_argument('seeds_txt', type=str,
help='txt file with the seeds 3D coordinates')
parser.add_argument('dwi_ref', type=str,
help='DWI reference image to get the affine matrix (nifti)')
parser.add_argument('stream_name', type=str,
help='basename for new streamline files')
#parser.print_help()
args = parser.parse_args()
# test values
# minc_RGB = '37A_l_minc_RGB.nii.gz'
# dwi_ref = '../37A_3d_ref.nii'
# seeds_txt = "37A_l_14_seeds_smooth_resampled.txt"
# stream_name = 'tck/37A_l_14_out'
minc_RGB = args.minc_RGB
dwi_ref = args.dwi_ref
seeds_txt = args.seeds_txt
stream_name = args.stream_name
out_dir = dirname(stream_name)
if not isdir(out_dir):
print(f"\n vector2streams.py: Directory '{out_dir}' doesn't exists\n")
quit()
img_RGB = nib.load(minc_RGB).get_fdata()
_, affine = load_nifti(dwi_ref)
seeds = np.loadtxt(seeds_txt)
slice_n = int(seeds[0,-1])
gX = img_RGB[:,:,:,0]
gY = img_RGB[:,:,:,1]
x, y = np.mgrid[0:gX.shape[0], 0:gX.shape[1]]
streams_2d = vectorfield2streams_2d(x, y, gX, gY, seeds[:,:2], slice_n,
side= 'r', start_line='outline')
# add z-coordinate & save
for i, s in enumerate(streams_2d):
ones = np.ones([len(s), 1])
v = np.concatenate((s, slice_n*ones, ones), axis=1)
aux = np.diag([0.5,0.5,1,1]) # we were working on 2x size images
new_s = (affine@[email protected]).T
#save
j = f"{i:0{3}}" # zero padding
np.savetxt(f"{stream_name}_{j}.txt", new_s[:,:3])
# convert to .tck & resample
convert = f"tckconvert {stream_name}_[].txt {stream_name}.tck"
resample = (f"tckresample -num_points 20 -nthreads 0 {stream_name}.tck"
f" {stream_name}_resampled.tck")
for my_command in [convert, resample]:
process = subprocess.Popen(my_command.split(), stdout=subprocess.PIPE)
output, error = process.communicate()
# Get orthogonal streamlines
tck_v = load_tractogram(f"{stream_name}_resampled.tck", dwi_ref,
#shifted_origin=False # corner of the voxel (DEPRECATED)
to_origin=Origin('corner')
# ^ NIFTI center, TRACKVIS corner (of the voxel)
)
v_strms = tck_v.streamlines
#v_strms_data = v_strms.data.reshape([len(v_strms), *v_strms[0].shape])
v_strms_data = v_strms.get_data().reshape([len(v_strms), *v_strms[0].shape])
h_strms_data = v_strms_data.transpose(1,0,2)
# for s in v_strms_data: plt.plot(*s[:,:2].T, color='blue')
# for s in v_strms_data.transpose(1,0,2): plt.plot(*s[:,:2].T,color='gray')
# plt.gca().axis('equal')
#sft_h = StatefulTractogram(h_strms_data, dwi_ref, Space.RASMM)
sft_h = StatefulTractogram(h_strms_data, dwi_ref, space=Space.RASMM,
origin=Origin('corner'))
save_tractogram(sft_h, f"{stream_name}_resampled_h.tck")