-
Notifications
You must be signed in to change notification settings - Fork 0
/
ManimZenoMeasureTree1.py
232 lines (179 loc) · 10.5 KB
/
ManimZenoMeasureTree1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
from manim import *
class ManimMeasureTree1(MovingCameraScene):
def construct(self):
n_line = NumberLine(x_range=[0, 1], length=10, include_numbers=True).shift(UP*3)
self.play(Create(n_line))
self.wait(2)
# Initialize an empty VGroup to hold all parts of the tree
tree = VGroup()
# Function to calculate the points of division
def get_division_points(depth, start=0, end=1):
if depth == 0:
return []
else:
mid = (start + end) / 2
return [mid] + get_division_points(depth - 1, start, mid) + get_division_points(depth - 1, mid, end)
# Function to create division marks with decreasing size more aggressively
def create_division_marks(points, depth):
marks = []
length_factor = max(0.2, 3 - (depth * 0.5))
width_factor = max(2, 4 - (depth * 0.5))
for point in points:
mark = Line(
start=n_line.number_to_point(point) + UP * 0.2 * length_factor,
end=n_line.number_to_point(point) + DOWN * 0.2 * length_factor,
stroke_width=width_factor
)
marks.append(mark)
return marks
# Function to add nodes and edges to the tree with decreasing size
def add_to_tree(nodes, edges, depth, x_pos, y_pos, space, vertical_spacing, edge_width, node_size):
if depth == 0:
return
else:
left_x = x_pos - space / 2
right_x = x_pos + space / 2
new_y = y_pos - vertical_spacing
left_node = Dot(point=np.array([left_x, new_y, 0]), radius=node_size)
right_node = Dot(point=np.array([right_x, new_y, 0]), radius=node_size)
nodes.add(left_node, right_node)
left_edge = Line(start=np.array([x_pos, y_pos, 0]), end=left_node.get_center(), stroke_width=edge_width)
right_edge = Line(start=np.array([x_pos, y_pos, 0]), end=right_node.get_center(), stroke_width=edge_width)
edges.add(left_edge, right_edge)
# Recursive calls for left and right children with adjusted edge width and node size
add_to_tree(nodes, edges, depth - 1, left_x, new_y, space / 2, vertical_spacing, edge_width * 0.95, node_size * 0.85 )
add_to_tree(nodes, edges, depth - 1, right_x, new_y, space / 2, vertical_spacing, edge_width * 0.95, node_size * 0.85)
# Recursive depth for simultaneous divisions
recursive_depth = 8
animation_speed = 0.5
# Coordinates for the root of the binary tree
root_x = 0
root_y = 2
initial_space = 5
# Initial edge width and node size
initial_edge_width = 3
initial_node_size = 0.1
# Create the root node and add to the tree VGroup
root_node = Dot(point=np.array([root_x, root_y, 0]), radius=initial_node_size)
tree.add(root_node)
# Create and animate division marks and tree nodes at each depth level
for i in range(1, recursive_depth + 1):
points = get_division_points(i)
marks = create_division_marks(points, i)
# Add nodes and edges to the tree
nodes = VGroup(root_node)
edges = VGroup()
vertical_spacing = 0.525 # Adjust this value as needed for your desired spacing
add_to_tree(nodes, edges, i, root_x, root_y, initial_space, vertical_spacing, initial_edge_width, initial_node_size)
tree.add(nodes, edges)
# Animate division marks and tree nodes and edges simultaneously
animations = [Create(mark) for mark in marks] + [Create(node) for node in nodes] + [Create(edge) for edge in edges]
# Add step number and the number of parts at each step
step_number = MathTex(f"{i}", color=WHITE).scale(0.7)
parts_number = MathTex(r"2^{" + f"{i}" + r"}", color=WHITE).scale(0.7)
# Position step number and parts number to the left of the binary tree, at different horizontal positions
step_number.move_to(np.array([-6.5, root_y - (i - 1) * vertical_spacing - 0.5, 0]))
parts_number.move_to(np.array([-6, root_y - (i - 1) * vertical_spacing - 0.5, 0])) # Align with step_number
# Include step number and parts number in the animations
animations.extend([Write(step_number), Write(parts_number)])
# Add fractions above each division mark, avoiding overlaps and making them smaller progressively
if i <= 6: # Only display fractions up to step 6
# Calculate the size for fractions based on the current depth
fraction_size = max(0.15, 0.5 - 0.05 * i) # Start smaller and decrease slightly with each step
for j in range(1, 2**i, 2): # Place fractions only at the midpoint of each interval
fraction = MathTex(r"\frac{1}{" + str(2**i) + r"}", color=WHITE).scale(fraction_size)
# Position the fraction above the midpoint of the interval
fraction.move_to(n_line.number_to_point(j / 2**i) + DOWN * 1 - i * vertical_spacing * UP)
animations.append(Write(fraction))
self.play(*animations, run_time=animation_speed)
self.wait(1) # Consistent wait time between levels
# Function to create a dynamic representation of the dense set
def create_dense_set_representation(depth):
dots = VGroup()
for i in range(2**depth):
dot = Dot(point=n_line.number_to_point(i / 2**depth), radius=0.02, color=BLUE)
dots.add(dot)
return dots
# Create the set representation with large brackets and many small points
set_width = 10 # Width of the set representation
set_bracket_left = MathTex(r"\{").scale(2) # Correct the brackets for sets
set_bracket_right = MathTex(r"\}").scale(2)
# This will create a line of small dots between the brackets to represent many points
center_point = n_line.get_center() # Current center point of the number line
set_bracket_left.move_to(center_point + DOWN*6 + LEFT*(set_width/2))
set_bracket_right.move_to(center_point + DOWN*6 + RIGHT*(set_width/2))
# Dense set representation
def create_dense_set():
dots = VGroup()
for i in range(0, 1024):
dot = Dot(point=n_line.number_to_point(i / 1024), radius=0.005, color=WHITE)
dots.add(dot)
return dots
dense_set = create_dense_set()
dense_set.move_to(center_point + DOWN*6)
# Create the omega symbol and the "2^ℕ" notation
omega_symbol = MathTex(r"\omega").scale(0.7)
two_to_the_n_symbol = MathTex(r"2^{\mathbb{N}}").scale(0.7)
# Position the omega symbol and the "2^ℕ" notation at the specified horizontal locations
# and align them vertically with the set brackets which are at DOWN*3
omega_symbol.move_to(np.array([-6.5, set_bracket_left.get_y(), 0]))
two_to_the_n_symbol.move_to(np.array([-6, set_bracket_right.get_y(), 0]))
# Create the ellipsis that indicates the continuation of the process below the binary tree
continuation_dots = MathTex(r"\cdots").next_to(tree, DOWN, buff=0.5)
# Create the continuation dots that will appear below the step number and part numbers
left_continuation_dots = MathTex(r"\cdots")
continuation_dots_y = continuation_dots.get_center()[1]
left_continuation_dots.move_to(np.array([-6.25, continuation_dots_y, 0])) # Centered between -6 and -6.5
# Animate the creation of the continuation dots
self.play(Write(continuation_dots), Write(left_continuation_dots))
# Animate the creation of set brackets and symbols
self.play(Write(set_bracket_left), Write(set_bracket_right), FadeIn(dense_set),
Write(omega_symbol), Write(two_to_the_n_symbol))
# Camera zoom animation - focus on the dense set of points
zoom_point = dense_set.get_center() # Center of the dense set
zoom_width = dense_set.get_width() # Initial width to cover the dense set
while zoom_width > 0.0001:
self.play(self.camera.frame.animate.move_to(zoom_point).set(width=zoom_width),
run_time=2, rate_func=linear)
zoom_width /= 2 # Reducing the width to zoom in further
# Hold the final scene
self.wait(5)
def number_to_index(self, number, total_points):
# Convert a number on the number line to the corresponding index in the dense set
return min(int(number * total_points), total_points - 1)
"""
# New code for runner's traversal with circles and lines
tracker = ValueTracker(0)
def get_line_obj():
sp = n_line.number_to_point(tracker.get_value())
ep = sp + UP*0.5
arrow = Arrow(ep, sp, buff=0, color=BLUE)
num = DecimalNumber(tracker.get_value(), color=BLUE, num_decimal_places=3)
num.next_to(arrow, UP)
return VGroup(arrow, num)
line_obj = always_redraw(get_line_obj)
self.add(line_obj)
runner = 0
sw = 10.0
vertical_spacing = 0.525 # Spacing between steps
self.wait(2)
circle_positions = [] # List to store positions of circles
for runner_step in range(1, 12, 1):
runner = runner + 1/2**runner_step
self.play(tracker.animate.set_value(runner), run_time=2)
self.wait(1)
sw = sw - 1
sp = n_line.number_to_point(tracker.get_value())
ep = sp + DOWN*(1 + vertical_spacing * (runner_step - 1))
newarrow = Arrow(ep, sp, buff=0, color=BLUE, max_tip_length_to_length_ratio=0.0, stroke_width=sw)
self.add(newarrow)
# Drawing a circle at the endpoint of the arrow
circle = Circle(radius=0.1, color=BLUE).move_to(ep)
self.add(circle)
circle_positions.append(ep)
# Drawing a line connecting this circle to the previous circle
if len(circle_positions) > 1:
connecting_line = Line(start=circle_positions[-2], end=circle_positions[-1], color=BLUE, stroke_width=5)
self.add(connecting_line)
self.wait(10)
"""