-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstoc1.cpp
818 lines (708 loc) · 29.5 KB
/
stoc1.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
/*************************** stoc1.cpp **********************************
* Author: Agner Fog
* Date created: 2002-01-04
* Last modified: 2008-11-30
* Project: stocc.zip
* Source URL: www.agner.org/random
*
* Description:
* Non-uniform random number generator functions.
*
* This file contains source code for the class StochasticLib1 defined in stocc.h.
*
* Documentation:
* ==============
* The file stocc.h contains class definitions.
* The file stocc.htm contains further instructions.
* The file distrib.pdf contains definitions of the statistic distributions.
* The file sampmet.pdf contains theoretical descriptions of the methods used
* for sampling from these distributions.
* The file ran-instructions.pdf contains general instructions.
*
* Copyright 2002-2008 by Agner Fog.
* GNU General Public License http://www.gnu.org/licenses/gpl.html
*****************************************************************************/
#include "stocc.h" // class definition
/***********************************************************************
constants
***********************************************************************/
const double SHAT1 = 2.943035529371538573; // 8/e
const double SHAT2 = 0.8989161620588987408; // 3-sqrt(12/e)
/***********************************************************************
Log factorial function
***********************************************************************/
double LnFac(int32_t n) {
// log factorial function. gives natural logarithm of n!
// define constants
static const double // coefficients in Stirling approximation
C0 = 0.918938533204672722, // ln(sqrt(2*pi))
C1 = 1./12.,
C3 = -1./360.;
// C5 = 1./1260., // use r^5 term if FAK_LEN < 50
// C7 = -1./1680.; // use r^7 term if FAK_LEN < 20
// static variables
static double fac_table[FAK_LEN]; // table of ln(n!):
static int initialized = 0; // remember if fac_table has been initialized
if (n < FAK_LEN) {
if (n <= 1) {
if (n < 0) FatalError("Parameter negative in LnFac function");
return 0;
}
if (!initialized) { // first time. Must initialize table
// make table of ln(n!)
double sum = fac_table[0] = 0.;
for (int i=1; i<FAK_LEN; i++) {
sum += log(double(i));
fac_table[i] = sum;
}
initialized = 1;
}
return fac_table[n];
}
// not found in table. use Stirling approximation
double n1, r;
n1 = n; r = 1. / n1;
return (n1 + 0.5)*log(n1) - n1 + C0 + r*(C1 + r*r*C3);
}
/***********************************************************************
Constructor
***********************************************************************/
StochasticLib1::StochasticLib1 (int seed)
: STOC_BASE(seed) {
// Initialize variables for various distributions
normal_x2_valid = 0;
hyp_n_last = hyp_m_last = hyp_N_last = -1; // Last values of hypergeometric parameters
pois_L_last = -1.; // Last values of Poisson parameters
bino_n_last = -1; bino_p_last = -1.; // Last values of binomial parameters
}
/***********************************************************************
Hypergeometric distribution
***********************************************************************/
int32_t StochasticLib1::Hypergeometric (int32_t n, int32_t m, int32_t N) {
/*
This function generates a random variate with the hypergeometric
distribution. This is the distribution you get when drawing balls without
replacement from an urn with two colors. n is the number of balls you take,
m is the number of red balls in the urn, N is the total number of balls in
the urn, and the return value is the number of red balls you get.
This function uses inversion by chop-down search from the mode when
parameters are small, and the ratio-of-uniforms method when the former
method would be too slow or would give overflow.
*/
int32_t fak, addd; // used for undoing transformations
int32_t x; // result
// check if parameters are valid
if (n > N || m > N || n < 0 || m < 0) {
FatalError("Parameter out of range in hypergeometric function");}
// symmetry transformations
fak = 1; addd = 0;
if (m > N/2) {
// invert m
m = N - m;
fak = -1; addd = n;
}
if (n > N/2) {
// invert n
n = N - n;
addd += fak * m; fak = - fak;
}
if (n > m) {
// swap n and m
x = n; n = m; m = x;
}
// cases with only one possible result end here
if (n == 0) return addd;
//------------------------------------------------------------------
// choose method
//------------------------------------------------------------------
if (N > 680 || n > 70) {
// use ratio-of-uniforms method
x = HypRatioOfUnifoms (n, m, N);
}
else {
// inversion method, using chop-down search from mode
x = HypInversionMod (n, m, N);
}
// undo symmetry transformations
return x * fak + addd;
}
/***********************************************************************
Subfunctions used by hypergeometric
***********************************************************************/
int32_t StochasticLib1::HypInversionMod (int32_t n, int32_t m, int32_t N) {
/*
Subfunction for Hypergeometric distribution. Assumes 0 <= n <= m <= N/2.
Overflow protection is needed when N > 680 or n > 75.
Hypergeometric distribution by inversion method, using down-up
search starting at the mode using the chop-down technique.
This method is faster than the rejection method when the variance is low.
*/
// Sampling
int32_t I; // Loop counter
int32_t L = N - m - n; // Parameter
double modef; // mode, float
double Mp, np; // m + 1, n + 1
double p; // temporary
double U; // uniform random
double c, d; // factors in iteration
double divisor; // divisor, eliminated by scaling
double k1, k2; // float version of loop counter
double L1 = L; // float version of L
Mp = (double)(m + 1);
np = (double)(n + 1);
if (N != hyp_N_last || m != hyp_m_last || n != hyp_n_last) {
// set-up when parameters have changed
hyp_N_last = N; hyp_m_last = m; hyp_n_last = n;
p = Mp / (N + 2.);
modef = np * p; // mode, real
hyp_mode = (int32_t)modef; // mode, integer
if (hyp_mode == modef && p == 0.5) {
hyp_mp = hyp_mode--;
}
else {
hyp_mp = hyp_mode + 1;
}
// mode probability, using log factorial function
// (may read directly from fac_table if N < FAK_LEN)
hyp_fm = exp(LnFac(N-m) - LnFac(L+hyp_mode) - LnFac(n-hyp_mode)
+ LnFac(m) - LnFac(m-hyp_mode) - LnFac(hyp_mode)
- LnFac(N) + LnFac(N-n) + LnFac(n) );
// safety bound - guarantees at least 17 significant decimal digits
// bound = min(n, (int32_t)(modef + k*c'))
hyp_bound = (int32_t)(modef + 11. * sqrt(modef * (1.-p) * (1.-n/(double)N)+1.));
if (hyp_bound > n) hyp_bound = n;
}
// loop until accepted
while(1) {
U = Random(); // uniform random number to be converted
// start chop-down search at mode
if ((U -= hyp_fm) <= 0.) return(hyp_mode);
c = d = hyp_fm;
// alternating down- and upward search from the mode
k1 = hyp_mp - 1; k2 = hyp_mode + 1;
for (I = 1; I <= hyp_mode; I++, k1--, k2++) {
// Downward search from k1 = hyp_mp - 1
divisor = (np - k1)*(Mp - k1);
// Instead of dividing c with divisor, we multiply U and d because
// multiplication is faster. This will give overflow if N > 800
U *= divisor; d *= divisor;
c *= k1 * (L1 + k1);
if ((U -= c) <= 0.) return(hyp_mp - I - 1); // = k1 - 1
// Upward search from k2 = hyp_mode + 1
divisor = k2 * (L1 + k2);
// re-scale parameters to avoid time-consuming division
U *= divisor; c *= divisor;
d *= (np - k2) * (Mp - k2);
if ((U -= d) <= 0.) return(hyp_mode + I); // = k2
// Values of n > 75 or N > 680 may give overflow if you leave out this..
// overflow protection
// if (U > 1.E100) {U *= 1.E-100; c *= 1.E-100; d *= 1.E-100;}
}
// Upward search from k2 = 2*mode + 1 to bound
for (k2 = I = hyp_mp + hyp_mode; I <= hyp_bound; I++, k2++) {
divisor = k2 * (L1 + k2);
U *= divisor;
d *= (np - k2) * (Mp - k2);
if ((U -= d) <= 0.) return(I);
// more overflow protection
// if (U > 1.E100) {U *= 1.E-100; d *= 1.E-100;}
}
}
}
int32_t StochasticLib1::HypRatioOfUnifoms (int32_t n, int32_t m, int32_t N) {
/*
Subfunction for Hypergeometric distribution using the ratio-of-uniforms
rejection method.
This code is valid for 0 < n <= m <= N/2.
The computation time hardly depends on the parameters, except that it matters
a lot whether parameters are within the range where the LnFac function is
tabulated.
Reference: E. Stadlober: "The ratio of uniforms approach for generating
discrete random variates". Journal of Computational and Applied Mathematics,
vol. 31, no. 1, 1990, pp. 181-189.
*/
int32_t L; // N-m-n
int32_t mode; // mode
int32_t k; // integer sample
double x; // real sample
double rNN; // 1/(N*(N+2))
double my; // mean
double var; // variance
double u; // uniform random
double lf; // ln(f(x))
L = N - m - n;
if (hyp_N_last != N || hyp_m_last != m || hyp_n_last != n) {
hyp_N_last = N; hyp_m_last = m; hyp_n_last = n; // Set-up
rNN = 1. / ((double)N*(N+2)); // make two divisions in one
my = (double)n * m * rNN * (N+2); // mean = n*m/N
mode = (int32_t)(double(n+1) * double(m+1) * rNN * N); // mode = floor((n+1)*(m+1)/(N+2))
var = (double)n * m * (N-m) * (N-n) / ((double)N*N*(N-1));// variance
hyp_h = sqrt(SHAT1 * (var+0.5)) + SHAT2; // hat width
hyp_a = my + 0.5; // hat center
hyp_fm = fc_lnpk(mode, L, m, n); // maximum
hyp_bound = (int32_t)(hyp_a + 4.0 * hyp_h); // safety-bound
if (hyp_bound > n) hyp_bound = n;
}
while(1) {
u = Random(); // uniform random number
if (u == 0) continue; // avoid division by 0
x = hyp_a + hyp_h * (Random()-0.5) / u; // generate hat distribution
if (x < 0. || x > 2E9) continue; // reject, avoid overflow
k = (int32_t)x;
if (k > hyp_bound) continue; // reject if outside range
lf = hyp_fm - fc_lnpk(k,L,m,n); // ln(f(k))
if (u * (4.0 - u) - 3.0 <= lf) break; // lower squeeze accept
if (u * (u-lf) > 1.0) continue; // upper squeeze reject
if (2.0 * log(u) <= lf) break; // final acceptance
}
return k;
}
double StochasticLib1::fc_lnpk(int32_t k, int32_t L, int32_t m, int32_t n) {
// subfunction used by hypergeometric and Fisher's noncentral hypergeometric distribution
return(LnFac(k) + LnFac(m - k) + LnFac(n - k) + LnFac(L + k));
}
#ifndef R_BUILD // Not needed if making R interface
/***********************************************************************
Multivariate hypergeometric distribution
***********************************************************************/
void StochasticLib1::MultiHypergeometric (int32_t * destination, int32_t * source, int32_t n, int colors) {
/*
This function generates a vector of random variates, each with the
hypergeometric distribution.
The multivariate hypergeometric distribution is the distribution you
get when drawing balls from an urn with more than two colors, without
replacement.
Parameters:
destination: An output array to receive the number of balls of each
color. Must have space for at least 'colors' elements.
source: An input array containing the number of balls of each
color in the urn. Must have 'colors' elements.
All elements must be non-negative.
n: The number of balls drawn from the urn.
Can't exceed the total number of balls in the urn.
colors: The number of possible colors.
*/
int32_t sum, x, y;
int i;
if (n < 0 || colors < 0) FatalError("Parameter negative in multihypergeo function");
if (colors == 0) return;
// compute total number of balls
for (i=0, sum=0; i<colors; i++) {
y = source[i];
if (y < 0) FatalError("Parameter negative in multihypergeo function");
sum += y;
}
if (n > sum) FatalError("n > sum in multihypergeo function");
for (i=0; i<colors-1; i++) {
// generate output by calling hypergeometric colors-1 times
y = source[i];
x = Hypergeometric(n, y, sum);
n -= x; sum -= y;
destination[i] = x;
}
// get the last one
destination[i] = n;
}
/***********************************************************************
Poisson distribution
***********************************************************************/
int32_t StochasticLib1::Poisson (double L) {
/*
This function generates a random variate with the poisson distribution.
Uses inversion by chop-down method for L < 17, and ratio-of-uniforms
method for L >= 17.
For L < 1.E-6 numerical inaccuracy is avoided by direct calculation.
*/
//------------------------------------------------------------------
// choose method
//------------------------------------------------------------------
if (L < 17) {
if (L < 1.E-6) {
if (L == 0) return 0;
if (L < 0) FatalError("Parameter negative in poisson function");
//--------------------------------------------------------------
// calculate probabilities
//--------------------------------------------------------------
// For extremely small L we calculate the probabilities of x = 1
// and x = 2 (ignoring higher x). The reason for using this
// method is to prevent numerical inaccuracies in other methods.
//--------------------------------------------------------------
return PoissonLow(L);
}
else {
//--------------------------------------------------------------
// inversion method
//--------------------------------------------------------------
// The computation time for this method grows with L.
// Gives overflow for L > 80
//--------------------------------------------------------------
return PoissonInver(L);
}
}
else {
if (L > 2.E9) FatalError("Parameter too big in poisson function");
//----------------------------------------------------------------
// ratio-of-uniforms method
//----------------------------------------------------------------
// The computation time for this method does not depend on L.
// Use where other methods would be slower.
//----------------------------------------------------------------
return PoissonRatioUniforms(L);
}
}
/***********************************************************************
Subfunctions used by poisson
***********************************************************************/
int32_t StochasticLib1::PoissonLow(double L) {
/*
This subfunction generates a random variate with the poisson
distribution for extremely low values of L.
The method is a simple calculation of the probabilities of x = 1
and x = 2. Higher values are ignored.
The reason for using this method is to avoid the numerical inaccuracies
in other methods.
*/
double d, r;
d = sqrt(L);
if (Random() >= d) return 0;
r = Random() * d;
if (r > L * (1.-L)) return 0;
if (r > 0.5 * L*L * (1.-L)) return 1;
return 2;
}
int32_t StochasticLib1::PoissonInver(double L) {
/*
This subfunction generates a random variate with the poisson
distribution using inversion by the chop down method (PIN).
Execution time grows with L. Gives overflow for L > 80.
The value of bound must be adjusted to the maximal value of L.
*/
const int bound = 130; // safety bound. Must be > L + 8*sqrt(L).
double r; // uniform random number
double f; // function value
int32_t x; // return value
if (L != pois_L_last) { // set up
pois_L_last = L;
pois_f0 = exp(-L); // f(0) = probability of x=0
}
while (1) {
r = Random(); x = 0; f = pois_f0;
do { // recursive calculation: f(x) = f(x-1) * L / x
r -= f;
if (r <= 0) return x;
x++;
f *= L;
r *= x; // instead of f /= x
}
while (x <= bound);
}
}
int32_t StochasticLib1::PoissonRatioUniforms(double L) {
/*
This subfunction generates a random variate with the poisson
distribution using the ratio-of-uniforms rejection method (PRUAt).
Execution time does not depend on L, except that it matters whether L
is within the range where ln(n!) is tabulated.
Reference: E. Stadlober: "The ratio of uniforms approach for generating
discrete random variates". Journal of Computational and Applied Mathematics,
vol. 31, no. 1, 1990, pp. 181-189.
*/
double u; // uniform random
double lf; // ln(f(x))
double x; // real sample
int32_t k; // integer sample
if (pois_L_last != L) {
pois_L_last = L; // Set-up
pois_a = L + 0.5; // hat center
int32_t mode = (int32_t)L; // mode
pois_g = log(L);
pois_f0 = mode * pois_g - LnFac(mode); // value at mode
pois_h = sqrt(SHAT1 * (L+0.5)) + SHAT2; // hat width
pois_bound = (int32_t)(pois_a + 6.0 * pois_h); // safety-bound
}
while(1) {
u = Random();
if (u == 0) continue; // avoid division by 0
x = pois_a + pois_h * (Random() - 0.5) / u;
if (x < 0 || x >= pois_bound) continue; // reject if outside valid range
k = (int32_t)(x);
lf = k * pois_g - LnFac(k) - pois_f0;
if (lf >= u * (4.0 - u) - 3.0) break; // quick acceptance
if (u * (u - lf) > 1.0) continue; // quick rejection
if (2.0 * log(u) <= lf) break; // final acceptance
}
return k;
}
/***********************************************************************
Binomial distribution
***********************************************************************/
int32_t StochasticLib1::Binomial (int32_t n, double p) {
/*
This function generates a random variate with the binomial distribution.
Uses inversion by chop-down method for n*p < 35, and ratio-of-uniforms
method for n*p >= 35.
For n*p < 1.E-6 numerical inaccuracy is avoided by poisson approximation.
*/
int inv = 0; // invert
int32_t x; // result
double np = n * p;
if (p > 0.5) { // faster calculation by inversion
p = 1. - p; inv = 1;
}
if (n <= 0 || p <= 0) {
if (n == 0 || p == 0) {
return inv * n; // only one possible result
}
// error exit
FatalError("Parameter out of range in binomial function");
}
//------------------------------------------------------------------
// choose method
//------------------------------------------------------------------
if (np < 35.) {
if (np < 1.E-6) {
// Poisson approximation for extremely low np
x = PoissonLow(np);
}
else {
// inversion method, using chop-down search from 0
x = BinomialInver(n, p);
}
}
else {
// ratio of uniforms method
x = BinomialRatioOfUniforms(n, p);
}
if (inv) {
x = n - x; // undo inversion
}
return x;
}
/***********************************************************************
Subfunctions used by binomial
***********************************************************************/
int32_t StochasticLib1::BinomialInver (int32_t n, double p) {
/*
Subfunction for Binomial distribution. Assumes p < 0.5.
Uses inversion method by search starting at 0.
Gives overflow for n*p > 60.
This method is fast when n*p is low.
*/
double f0, f, q;
int32_t bound;
double pn, r, rc;
int32_t x, n1, i;
// f(0) = probability of x=0 is (1-p)^n
// fast calculation of (1-p)^n
f0 = 1.; pn = 1.-p; n1 = n;
while (n1) {
if (n1 & 1) f0 *= pn;
pn *= pn; n1 >>= 1;
}
// calculate safety bound
rc = (n + 1) * p;
bound = (int32_t)(rc + 11.0*(sqrt(rc) + 1.0));
if (bound > n) bound = n;
q = p / (1. - p);
while (1) {
r = Random();
// recursive calculation: f(x) = f(x-1) * (n-x+1)/x*p/(1-p)
f = f0; x = 0; i = n;
do {
r -= f;
if (r <= 0) return x;
x++;
f *= q * i;
r *= x; // it is faster to multiply r by x than dividing f by x
i--;
}
while (x <= bound);
}
}
int32_t StochasticLib1::BinomialRatioOfUniforms (int32_t n, double p) {
/*
Subfunction for Binomial distribution. Assumes p < 0.5.
Uses the Ratio-of-Uniforms rejection method.
The computation time hardly depends on the parameters, except that it matters
a lot whether parameters are within the range where the LnFac function is
tabulated.
Reference: E. Stadlober: "The ratio of uniforms approach for generating
discrete random variates". Journal of Computational and Applied Mathematics,
vol. 31, no. 1, 1990, pp. 181-189.
*/
double u; // uniform random
double q1; // 1-p
double np; // n*p
double var; // variance
double lf; // ln(f(x))
double x; // real sample
int32_t k; // integer sample
if(bino_n_last != n || bino_p_last != p) { // Set_up
bino_n_last = n;
bino_p_last = p;
q1 = 1.0 - p;
np = n * p;
bino_mode = (int32_t)(np + p); // mode
bino_a = np + 0.5; // hat center
bino_r1 = log(p / q1);
bino_g = LnFac(bino_mode) + LnFac(n-bino_mode);
var = np * q1; // variance
bino_h = sqrt(SHAT1 * (var+0.5)) + SHAT2; // hat width
bino_bound = (int32_t)(bino_a + 6.0 * bino_h);// safety-bound
if (bino_bound > n) bino_bound = n; // safety-bound
}
while (1) { // rejection loop
u = Random();
if (u == 0) continue; // avoid division by 0
x = bino_a + bino_h * (Random() - 0.5) / u;
if (x < 0. || x > bino_bound) continue; // reject, avoid overflow
k = (int32_t)x; // truncate
lf = (k-bino_mode)*bino_r1+bino_g-LnFac(k)-LnFac(n-k);// ln(f(k))
if (u * (4.0 - u) - 3.0 <= lf) break; // lower squeeze accept
if (u * (u - lf) > 1.0) continue; // upper squeeze reject
if (2.0 * log(u) <= lf) break; // final acceptance
}
return k;
}
/***********************************************************************
Multinomial distribution
***********************************************************************/
void StochasticLib1::Multinomial (int32_t * destination, double * source, int32_t n, int colors) {
/*
This function generates a vector of random variates, each with the
binomial distribution.
The multinomial distribution is the distribution you get when drawing
balls from an urn with more than two colors, with replacement.
Parameters:
destination: An output array to receive the number of balls of each
color. Must have space for at least 'colors' elements.
source: An input array containing the probability or fraction
of each color in the urn. Must have 'colors' elements.
All elements must be non-negative. The sum doesn't have
to be 1, but the sum must be positive.
n: The number of balls drawn from the urn.
colors: The number of possible colors.
*/
double s, sum;
int32_t x;
int i;
if (n < 0 || colors < 0) FatalError("Parameter negative in multinomial function");
if (colors == 0) return;
// compute sum of probabilities
for (i=0, sum=0; i<colors; i++) {
s = source[i];
if (s < 0) FatalError("Parameter negative in multinomial function");
sum += s;
}
if (sum == 0 && n > 0) FatalError("Zero sum in multinomial function");
for (i=0; i<colors-1; i++) {
// generate output by calling binomial (colors-1) times
s = source[i];
if (sum <= s) {
// this fixes two problems:
// 1. prevent division by 0 when sum = 0
// 2. prevent s/sum getting bigger than 1 in case of rounding errors
x = n;
}
else {
x = Binomial(n, s/sum);
}
n -= x; sum -= s;
destination[i] = x;
}
// get the last one
destination[i] = n;
}
void StochasticLib1::Multinomial (int32_t * destination, int32_t * source, int32_t n, int colors) {
// same as above, with integer source
int32_t x, p, sum;
int i;
if (n < 0 || colors < 0) FatalError("Parameter negative in multinomial function");
if (colors == 0) return;
// compute sum of probabilities
for (i=0, sum=0; i<colors; i++) {
p = source[i];
if (p < 0) FatalError("Parameter negative in multinomial function");
sum += p;
}
if (sum == 0 && n > 0) FatalError("Zero sum in multinomial function");
for (i=0; i<colors-1; i++) {
// generate output by calling binomial (colors-1) times
if (sum == 0) {
destination[i] = 0; continue;
}
p = source[i];
x = Binomial(n, (double)p/sum);
n -= x; sum -= p;
destination[i] = x;
}
// get the last one
destination[i] = n;
}
/***********************************************************************
Normal distribution
***********************************************************************/
double StochasticLib1::Normal(double m, double s) {
// normal distribution with mean m and standard deviation s
double normal_x1; // first random coordinate (normal_x2 is member of class)
double w; // radius
if (normal_x2_valid) { // we have a valid result from last call
normal_x2_valid = 0;
return normal_x2 * s + m;
}
// make two normally distributed variates by Box-Muller transformation
do {
normal_x1 = 2. * Random() - 1.;
normal_x2 = 2. * Random() - 1.;
w = normal_x1*normal_x1 + normal_x2*normal_x2;
}
while (w >= 1. || w < 1E-30);
w = sqrt(log(w)*(-2./w));
normal_x1 *= w; normal_x2 *= w; // normal_x1 and normal_x2 are independent normally distributed variates
normal_x2_valid = 1; // save normal_x2 for next call
return normal_x1 * s + m;
}
double StochasticLib1::NormalTrunc(double m, double s, double limit) {
// Truncated normal distribution
// The tails are cut off so that the output
// is in the interval from (m-limit) to (m+limit)
if (limit < s) FatalError("limit out of range in NormalTrunc function");
double x;
do {
x = Normal(0., s);
} while (fabs(x) > limit); // reject if beyond limit
return x + m;
}
/***********************************************************************
Bernoulli distribution
***********************************************************************/
int StochasticLib1::Bernoulli(double p) {
// Bernoulli distribution with parameter p. This function returns
// 0 or 1 with probability (1-p) and p, respectively.
if (p < 0 || p > 1) FatalError("Parameter out of range in Bernoulli function");
return Random() < p;
}
/***********************************************************************
Shuffle function
***********************************************************************/
void StochasticLib1::Shuffle(int * list, int min, int n) {
/*
This function makes a list of the n numbers from min to min+n-1
in random order.
The parameter 'list' must be an array with at least n elements.
The array index goes from 0 to n-1.
If you want to shuffle something else than integers then use the
integers in list as an index into a table of the items you want to shuffle.
*/
int i, j, swap;
// put numbers from min to min+n-1 into list
for (i=0, j=min; i<n; i++, j++) list[i] = j;
// shuffle list
for (i=0; i<n-1; i++) {
// item number i has n-i numbers to choose between
j = IRandom(i,n-1);
// swap items i and j
swap = list[j]; list[j] = list[i]; list[i] = swap;
}
}
#endif // ifndef R_BUILD