forked from CASIA-IVA-Lab/FiLo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
698 lines (588 loc) · 24.7 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
import argparse
import logging
import os
import copy
import numpy as np
import torch
from PIL import Image
# Grounding DINO
import models.GroundingDINO.groundingdino.datasets.transforms as T
from models.GroundingDINO.groundingdino.models import build_model
from models.GroundingDINO.groundingdino.util.slconfig import SLConfig
from models.GroundingDINO.groundingdino.util.utils import (
clean_state_dict,
get_phrases_from_posmap,
)
import numpy as np
import matplotlib.pyplot as plt
from skimage import measure
import torchvision
import threading
import re
import torchvision.transforms as transforms
from tabulate import tabulate
from sklearn.metrics import (
auc,
roc_auc_score,
average_precision_score,
precision_recall_curve,
)
import torch
import argparse
import copy
import torch.nn.functional as F
from datasets.mvtec_supervised import MVTecDataset
from datasets.visa_supervised import VisaDataset
import models.vv_open_clip as open_clip
from PIL import Image
from tqdm import tqdm
from prefetch_generator import BackgroundGenerator
from matplotlib import pyplot as plt
from models.FiLo import FiLo
class DataLoaderX(torch.utils.data.DataLoader):
def __iter__(self):
return BackgroundGenerator(super().__iter__())
status_abnormal_winclip = [
"damaged {}",
"broken {}",
"{} with flaw",
"{} with defect",
"{} with damage",
]
anomaly_status_general = ["anomaly", "damage", "broken", "defect", "contamination"]
mvtec_anomaly_detail_gpt = {
"carpet": "discoloration in a specific area,irregular patch or section with a different texture,frayed edges or unraveling fibers,burn mark or scorching",
"grid": "crooked,cracks,excessive gaps,discoloration,deformation,missing,inconsistent spacing between grid elements,corrosion,visible signs,chipping",
"leather": "scratches,discoloration,creases,uneven texture,tears,brittleness,damage,seams,heat damage,mold",
"tile": "chipped,irregularities,discoloration,efflorescence,warping,missing,depressions,lippage,fungus,damage",
"wood": "knots,warping,cracks along the grain,mold growth on the surface,staining from water damage,wood rot,woodworm holes,rough patches,protruding knots",
"bottle": "cracked large,cracked small,dented large,dented small,leaking,discolored,deformed,missing cap,excessive condensation,unusual odor",
"cable": "twisted,knotted cable strands,detached connectors,excessive stretching,dents,corrosion,scorching along the cable,exposed conductive material",
"capsule": "irregular shape,discoloration coloring,crinkled,uneven seam,condensation inside the capsule,foreign particles,unusually soft or hard",
"hazelnut": "fungal growth,unusual discoloration,rotten or foul odor emanating,insect infestation,wetness,misshapen shell,unusually thin,contaminants,unusual texture",
"metal nut": "cracks,irregular threading,corrosion,missing,distortion,signs of discoloration,excessive wear on contact surfaces,inconsistent texture",
"pill": "irregular shape,crumbling texture,excessive powder,Uneven coating,presence of air bubbles,disintegration,abnormal specks",
"screw": "rust on the surface,bent,damaged threads,stripped threads,deformed top,coating damage,uneven grooves,inconsistent size",
"toothbrush": "loose bristles,uneven bristle distribution,excessive shedding of bristles,staining on the bristles,abrasive texture,irregularities in the shape",
"transistor": "burn marks,detached leads,signs of corrosion,irregularities in the shape,presence of cracks or fractures,signs of physical trauma,irregularities in the surface texture",
"zipper": "bent,frayed,misaligned,excessive stiffness,corroded,detaches,loose,warped",
}
visa_anomaly_detail_gpt = {
"candle": "cracks or fissures in the wax,Wax pooling unevenly around the wick,tunneling,incomplete wax melt pool,irregular or flickering flame,other,extra wax in candle,wax melded out of the candle",
"capsules": "uneven capsule size,capsule shell appears brittle,excessively soft,dents,condensation,irregular seams or joints,specks",
"cashew": "uneven coloring,fungal growth,presence of foreign objects,unusual texture,empty shells,signs of moisture,stuck together",
"chewinggum": "consistency,presence of foreign objects,uneven coloring,excessive hardness,similar colour spot",
"fryum": "irregular shape,unusual odor,uneven coloring,unusual texture,small scratches,different colour spot,fryum stuck together,other",
"macaroni1": "uneven shape ,small scratches,small cracks,uneven coloring,signs of insect infestation,uneven texture,Unusual consistency",
"macaroni2": "irregular shape,small scratches,presence of foreign particles,excessive moisture,Signs of infestation,small cracks,unusual texture",
"pcb1": "oxidation on the copper traces,separation of layers,presence of solder bridges,excessive solder residue,discoloration,Uneven solder joints,bowing of the board,missing vias",
"pcb2": "oxidation on the copper traces,separation of layers,presence of solder bridges,excessive solder residue,discoloration,Uneven solder joints,bowing of the board,missing vias",
"pcb3": "oxidation on the copper traces,separation of layers,presence of solder bridges,excessive solder residue,discoloration,Uneven solder joints,bowing of the board,missing vias",
"pcb4": "oxidation on the copper traces,separation of layers,presence of solder bridges,excessive solder residue,discoloration,Uneven solder joints,bowing of the board,missing vias",
"pipe fryum": "uneven shape,presence of foreign objects,different colour spot,unusual odor,empty interior,unusual texture,similar colour spot,stuck together",
}
for cls_name in mvtec_anomaly_detail_gpt.keys():
mvtec_anomaly_detail_gpt[cls_name] = (
mvtec_anomaly_detail_gpt[cls_name].split(",")
)
for cls_name in visa_anomaly_detail_gpt.keys():
visa_anomaly_detail_gpt[cls_name] = (
visa_anomaly_detail_gpt[cls_name].split(",")
)
status_abnormal = {}
for cls_name in mvtec_anomaly_detail_gpt.keys():
status_abnormal[cls_name] = ['abnormal {} ' + 'with {}'.format(x) for x in mvtec_anomaly_detail_gpt[cls_name]]
for cls_name in visa_anomaly_detail_gpt.keys():
status_abnormal[cls_name] = ['abnormal {} ' + 'with {}'.format(x) for x in visa_anomaly_detail_gpt[cls_name]]
mvtec_obj_list = [
"bottle",
"cable",
"capsule",
"carpet",
"grid",
"hazelnut",
"leather",
"metal nut",
"pill",
"screw",
"tile",
"toothbrush",
"transistor",
"wood",
"zipper",
]
visa_obj_list = [
"candle",
"cashew",
"chewinggum",
"fryum",
"pipe fryum",
"macaroni1",
"macaroni2",
"pcb1",
"pcb2",
"pcb3",
"pcb4",
"capsules",
]
location = {"top left": [(0, 0),(172, 172)],
"top": [(173, 0),(344, 172)],
"top right": [(345, 0), (517, 172)],
"left": [(0, 173), (172, 344)],
"center": [(173, 173), (344, 344)],
"right": [(345, 173), (517, 344)],
"bottom left": [(0, 345), (172, 517)],
"bottom": [(173, 345), (344, 517)],
"bottom right": [(345, 345), (517, 517)]}
def load_image(image_path):
# load image
image_pil = Image.open(image_path).convert("RGB") # load image
transform = T.Compose(
[
T.RandomResize([image_size, image_size], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]
)
image, _ = transform(image_pil, None) # 3, h, w
return image_pil, image
def cal_pro_score(obj, masks, amaps, max_step=200, expect_fpr=0.3):
# ref: https://github.com/gudovskiy/cflow-ad/blob/master/train.py
binary_amaps = np.zeros_like(amaps, dtype=bool)
min_th, max_th = amaps.min(), amaps.max()
delta = (max_th - min_th) / max_step
pros, fprs, ths = [], [], []
for th in np.arange(min_th, max_th, delta):
binary_amaps[amaps <= th], binary_amaps[amaps > th] = 0, 1
pro = []
for binary_amap, mask in zip(binary_amaps, masks):
for region in measure.regionprops(measure.label(mask)):
tp_pixels = binary_amap[region.coords[:, 0], region.coords[:, 1]].sum()
pro.append(tp_pixels / region.area)
inverse_masks = 1 - masks
fp_pixels = np.logical_and(inverse_masks, binary_amaps).sum()
fpr = fp_pixels / inverse_masks.sum()
pros.append(np.array(pro).mean())
fprs.append(fpr)
ths.append(th)
pros, fprs, ths = np.array(pros), np.array(fprs), np.array(ths)
idxes = fprs < expect_fpr
fprs = fprs[idxes]
fprs = (fprs - fprs.min()) / (fprs.max() - fprs.min())
pro_auc = auc(fprs, pros[idxes])
return pro_auc
def load_model(model_config_path, model_checkpoint_path, device):
args = SLConfig.fromfile(model_config_path)
args.device = device
model = build_model(args)
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
load_res = model.load_state_dict(clean_state_dict(checkpoint), strict=False)
print(load_res)
_ = model.eval()
return model
# gaussion_filter =
def get_grounding_output(
model,
image,
caption,
box_threshold,
text_threshold,
category,
with_logits=True,
device="cpu",
area_thr=0.8,
):
caption = caption.lower()
caption = caption.strip()
if not caption.endswith("."):
caption = caption + "."
model = model.to(device)
image = image.to(device)
with torch.no_grad():
outputs = model(image[None], captions=[caption])
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
# filter output
logits_filt = logits.clone()
boxes_filt = boxes.clone()
boxes_area = boxes_filt[:, 2] * boxes_filt[:, 3]
filt_mask = torch.bitwise_and(
(logits_filt.max(dim=1)[0] > box_threshold), (boxes_area < area_thr)
)
if torch.sum(filt_mask) == 0: # in case there are no matches
filt_mask = torch.argmax(logits_filt.max(dim=1)[0])
logits_filt = logits_filt[filt_mask].unsqueeze(0) # num_filt, 256
boxes_filt = boxes_filt[filt_mask].unsqueeze(0)
else:
logits_filt = logits_filt[filt_mask] # num_filt, 256
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
# get phrase
tokenlizer = model.tokenizer
tokenized = tokenlizer(caption)
# build pred
pred_phrases = []
boxes_filt_category = []
for logit, box in zip(logits_filt, boxes_filt):
pred_phrase = get_phrases_from_posmap(
logit > text_threshold, tokenized, tokenlizer
)
if with_logits:
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
else:
pred_phrases.append(pred_phrase)
boxes_filt_category.append(box)
boxes_filt_category = torch.stack(boxes_filt_category, dim=0)
return boxes_filt_category, pred_phrases
def apply_boxes_torch(boxes, original_size):
boxes = boxes.reshape(-1, 2, 2)
old_h, old_w = original_size
scale = image_size * 1.0 / max(original_size[0], original_size[1])
newh, neww = original_size[0] * scale, original_size[1] * scale
new_w = int(neww + 0.5)
new_h = int(newh + 0.5)
boxes = copy.deepcopy(boxes).to(torch.float)
boxes[..., 0] = boxes[..., 0] * (new_w / old_w)
boxes[..., 1] = boxes[..., 1] * (new_h / old_h)
return boxes.reshape(-1, 4)
def show_mask(mask, ax, random_color=True):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_box(box, ax, label):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(
plt.Rectangle((x0, y0), w, h, edgecolor="green", facecolor=(0, 0, 0, 0), lw=2)
)
ax.text(x0, y0, label)
def check_elements_in_array(arr1, arr2):
at = False
for elem in arr1:
if elem in arr2:
at = True
break
return at
def cal_score(obj):
table = []
gt_px = []
pr_px = []
gt_sp = []
pr_sp = []
pr_sp_tmp = []
table.append(obj)
# print(results['cls_names'])
for idxes in range(len(results["cls_names"])):
if results["cls_names"][idxes] == obj:
gt_px.append(results["imgs_masks"][idxes].squeeze(1).numpy())
pr_px.append(results["anomaly_maps"][idxes])
gt_sp.append(results["gt_sp"][idxes])
pr_sp.append(results["pr_sp"][idxes])
gt_px = np.array(gt_px)
gt_sp = np.array(gt_sp)
pr_px = np.array(pr_px)
pr_sp = np.array(pr_sp)
auroc_px = roc_auc_score(gt_px.ravel(), pr_px.ravel())
auroc_sp = roc_auc_score(gt_sp, pr_sp)
ap_sp = average_precision_score(gt_sp, pr_sp)
ap_px = average_precision_score(gt_px.ravel(), pr_px.ravel())
# f1_sp
precisions, recalls, thresholds = precision_recall_curve(gt_sp, pr_sp)
f1_scores = (2 * precisions * recalls) / (precisions + recalls)
f1_sp = np.max(f1_scores[np.isfinite(f1_scores)])
# f1_px
precisions, recalls, thresholds = precision_recall_curve(
gt_px.ravel(), pr_px.ravel()
)
f1_scores = (2 * precisions * recalls) / (precisions + recalls)
f1_px = np.max(f1_scores[np.isfinite(f1_scores)])
# aupro
if len(gt_px.shape) == 4:
gt_px = gt_px.squeeze(1)
if len(pr_px.shape) == 4:
pr_px = pr_px.squeeze(1)
aupro = cal_pro_score(obj, gt_px, pr_px)
table.append(str(np.round(auroc_px * 100, decimals=1)))
table.append(str(np.round(f1_px * 100, decimals=1)))
table.append(str(np.round(ap_px * 100, decimals=1)))
table.append(str(np.round(aupro * 100, decimals=1)))
table.append(str(np.round(auroc_sp * 100, decimals=1)))
table.append(str(np.round(f1_sp * 100, decimals=1)))
table.append(str(np.round(ap_sp * 100, decimals=1)))
table_ls.append(table)
auroc_sp_ls.append(auroc_sp)
auroc_px_ls.append(auroc_px)
f1_sp_ls.append(f1_sp)
f1_px_ls.append(f1_px)
aupro_ls.append(aupro)
ap_sp_ls.append(ap_sp)
ap_px_ls.append(ap_px)
if __name__ == "__main__":
parser = argparse.ArgumentParser("Test", add_help=True)
parser.add_argument(
"--groundingdino_config",
type=str,
default="./models/GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py",
help="path to config file",
)
parser.add_argument(
"--grounded_checkpoint",
type=str,
default="./grounding_weight/grounding_mvtec.pth",
help="path to checkpoint file",
)
parser.add_argument(
"--clip_model", type=str, default="ViT-L-14-336", help="model used"
)
parser.add_argument(
"--clip_pretrained",
type=str,
default="openai",
help="pretrained weight used",
)
parser.add_argument("--image_size", type=int, default=518, help="image size")
parser.add_argument(
"--features_list",
type=int,
nargs="+",
default=[6, 12, 18, 24],
help="features used",
)
parser.add_argument(
"--dataset", type=str, default="mvtec", help="train dataset name"
)
parser.add_argument(
"--data_path",
type=str,
default="/path/to/data/mvtec",
help="path to test dataset",
)
parser.add_argument(
"--box_threshold", type=float, default=0.25, help="box threshold"
)
parser.add_argument(
"--text_threshold", type=float, default=0.25, help="text threshold"
)
parser.add_argument(
"--area_threshold", type=float, default=0.7, help="defect area threshold"
)
parser.add_argument(
"--device", type=str, default="cuda", help="running on cpu only!, default=False"
)
parser.add_argument(
"--ckpt_path", type=str, default="default", help="ckpt_path"
)
parser.add_argument("--n_ctx", type=int, default=12, help="n_ctx")
args = parser.parse_args()
# cfg
groundingdino_config = (
args.groundingdino_config
) # change the path of the model config file
grounded_checkpoint = args.grounded_checkpoint # change the path of the model
box_threshold = args.box_threshold
text_threshold = args.box_threshold
area_threshold = args.area_threshold
dataset_name = args.dataset
dataset_dir = args.data_path
device = args.device
image_size = args.image_size
save_path = args.ckpt_path.split("/")[-2]
if not os.path.exists(save_path):
os.makedirs(save_path)
txt_path = os.path.join(save_path, f"{dataset_name}_log.txt")
# logger
root_logger = logging.getLogger()
for handler in root_logger.handlers[:]:
root_logger.removeHandler(handler)
root_logger.setLevel(logging.WARNING)
logger = logging.getLogger("test")
formatter = logging.Formatter(
"%(asctime)s.%(msecs)03d - %(levelname)s: %(message)s",
datefmt="%y-%m-%d %H:%M:%S",
)
logger.setLevel(logging.INFO)
file_handler = logging.FileHandler(txt_path, mode="w")
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
console_handler = logging.StreamHandler()
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
# record parameters
for arg in vars(args):
logger.info(f"{arg}: {getattr(args, arg)}")
positions_list = ['top left', 'top', 'top right', 'left', 'center', 'right', 'bottom left', 'bottom', 'bottom right']
# load model
model = load_model(groundingdino_config, grounded_checkpoint, device=device) # DINO
_, _, preprocess = open_clip.create_model_and_transforms(
args.clip_model, image_size, pretrained=args.clip_pretrained
)
# dataset
transform = transforms.Compose(
[
transforms.Resize((image_size, image_size)),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
]
)
gaussion_filter = torchvision.transforms.GaussianBlur(3, 4.0)
if dataset_name == "mvtec":
test_data = MVTecDataset(
root=dataset_dir,
transform=preprocess,
target_transform=transform,
aug_rate=-1,
mode="test",
)
else:
test_data = VisaDataset(
root=dataset_dir,
transform=preprocess,
target_transform=transform,
mode="test",
)
test_dataloader = DataLoaderX(
test_data, batch_size=1, shuffle=False, num_workers=8, pin_memory=True
)
obj_list = [x.replace("_", " ") for x in test_data.get_cls_names()]
filo_model = FiLo(obj_list, args, device).to(device)
ckpt_path = args.ckpt_path
ckpt = torch.load(ckpt_path)
filo_model.load_state_dict(ckpt["filo"], strict=False)
results = {}
results["cls_names"] = []
results["imgs_masks"] = []
results["anomaly_maps"] = []
results["gt_sp"] = []
results["pr_sp"] = []
for items in tqdm(test_dataloader):
image = items["img"].to(device)
image_path = items["img_path"][0]
# if 'bottle' not in image_path:
# continue
cls_name = items["cls_name"][0]
results["cls_names"].append(cls_name)
gt_mask = items["img_mask"]
gt_mask[gt_mask > 0.5], gt_mask[gt_mask <= 0.5] = 1, 0
results["imgs_masks"].append(gt_mask) # px
results["gt_sp"].append(items["anomaly"].item())
with torch.no_grad():
# run grounding dino model
if dataset_name == "mvtec":
text_prompt = " . ".join(anomaly_status_general + mvtec_anomaly_detail_gpt[cls_name])
else:
text_prompt = " . ".join(anomaly_status_general + visa_anomaly_detail_gpt[cls_name])
# print(text_prompt)
_, image_dino = load_image(image_path)
boxes_filt, pred_phrases = get_grounding_output(
model, image_dino, text_prompt, box_threshold, text_threshold, category=cls_name, device='cuda', area_thr=area_threshold
)
# 删除不是异常的矩形框
boxes_filt_copy = copy.deepcopy(boxes_filt)
if dataset_name == "mvtec":
for i in range(boxes_filt.size(0)):
if not check_elements_in_array(mvtec_anomaly_detail_gpt[cls_name] + anomaly_status_general, pred_phrases[i]):
pred_phrases[i] += "#$%"
# boxes_filt_copy = torch.cat([boxes_filt_copy[:i], boxes_filt_copy[i+1:]])
continue
boxes_filt_copy[i] = boxes_filt_copy[i] * torch.Tensor([image_size, image_size, image_size, image_size])
boxes_filt_copy[i][:2] -= boxes_filt_copy[i][2:] / 2
boxes_filt_copy[i][2:] += boxes_filt_copy[i][:2]
boxes_filt = boxes_filt_copy.cpu()
else:
for i in range(boxes_filt.size(0)):
if not check_elements_in_array(visa_anomaly_detail_gpt[cls_name] + anomaly_status_general, pred_phrases[i]):
pred_phrases[i] += "#$%"
# boxes_filt_copy = torch.cat([boxes_filt_copy[:i], boxes_filt_copy[i+1:]])
continue
boxes_filt_copy[i] = boxes_filt_copy[i] * torch.Tensor([image_size, image_size, image_size, image_size])
boxes_filt_copy[i][:2] -= boxes_filt_copy[i][2:] / 2
boxes_filt_copy[i][2:] += boxes_filt_copy[i][:2]
boxes_filt = boxes_filt_copy.cpu()
position = []
max_box = None
max_pred = 0
for i in range(boxes_filt.size(0)):
if '#$%' in pred_phrases[i]:
continue
number = float(re.search(r'\((.*?)\)', pred_phrases[i]).group(1))
if(number >= max_pred):
max_box = boxes_filt[i]
max_pred = number
if max_box != None:
center = (max_box[0] + max_box[2]) / 2, (max_box[1] + max_box[3]) / 2
else:
center = 259, 259
for region, ((x1, y1), (x2, y2)) in location.items():
if x1 <= center[0] <= x2 and y1 <= center[1] <= y2:
position.append(region)
break
with torch.no_grad():
text_probs, anomaly_maps = filo_model(items, with_adapter=True, positions = position)
for i in range(len(anomaly_maps)):
anomaly_maps[i] = gaussion_filter(
(anomaly_maps[i][:, 1, :, :] - anomaly_maps[i][:, 0, :, :] + 1) / 2
)
anomaly_map_ret = torch.mean(
torch.stack(anomaly_maps, dim=0), dim=0
).unsqueeze(1)
results["pr_sp"].append((text_probs.flatten()[1].item() + anomaly_map_ret.max().item()) / 2)
anomaly_score = anomaly_map_ret
anomaly_score_copy = anomaly_score.clone()
for rect in boxes_filt:
left_top_x = int(rect[0].item())
left_top_y = int(rect[1].item())
right_bottom_x = int(rect[2].item())
right_bottom_y = int(rect[3].item())
anomaly_score_copy[:, :, left_top_y:right_bottom_y, left_top_x:right_bottom_x] = 1
anomaly_score = torch.where(anomaly_score_copy == 1, anomaly_score, anomaly_score * 0.7)
results["anomaly_maps"].append(
anomaly_score.detach().cpu().numpy().reshape(image_size, image_size)
)
# metrics
table_ls = []
auroc_sp_ls = []
auroc_px_ls = []
f1_sp_ls = []
f1_px_ls = []
aupro_ls = []
ap_sp_ls = []
ap_px_ls = []
threads = [None] * 20
idx = 0
for obj in tqdm(obj_list):
threads[idx] = threading.Thread(target=cal_score, args=(obj, ))
threads[idx].start()
idx += 1
for i in range(idx):
threads[i].join()
# logger
table_ls.append(
[
"mean",
str(np.round(np.mean(auroc_px_ls) * 100, decimals=1)),
str(np.round(np.mean(f1_px_ls) * 100, decimals=1)),
str(np.round(np.mean(ap_px_ls) * 100, decimals=1)),
str(np.round(np.mean(aupro_ls) * 100, decimals=1)),
str(np.round(np.mean(auroc_sp_ls) * 100, decimals=1)),
str(np.round(np.mean(f1_sp_ls) * 100, decimals=1)),
str(np.round(np.mean(ap_sp_ls) * 100, decimals=1)),
]
)
results = tabulate(
table_ls,
headers=[
"objects",
"auroc_px",
"f1_px",
"ap_px",
"aupro",
"auroc_sp",
"f1_sp",
"ap_sp",
],
tablefmt="pipe",
)
logger.info("\n%s", results)