You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
As there are 3 types of character set under the data directory i.e
charset_36.txt
charset_62.txt
charset_vn.txt
if I want to use other than charset_36.txt then what arguments need to change under config i.e config = Config('configs/train_abinet.yaml')
Already tried with (0): dataset_case_sensitive = True (1): dataset_charset_path = data/charset_62.txt (3): dataset_eval_case_sensitive = True
didn't get output in the capital later by changing and popping up with an error
`RuntimeError Traceback (most recent call last)
Cell In[2], line 1
----> 1 demo.main(input_folder=os.path.join('Test_img/test_img/'))
ABINET\ABINet\demo.py:104, in main(input_folder)
102 logging.info('Construct model.')
103 model = get_model(config).to(device)
--> 104 model = load(model, config.model_checkpoint, device=device)
105 charset = CharsetMapper(filename=config.dataset_charset_path,
106 max_length=config.dataset_max_length + 1)
108 if os.path.isdir(input_folder):
ABINET\ABINet\demo.py:66, in load(model, file, device, strict)
64 if set(state.keys()) == {'model', 'opt'}:
65 state = state['model']
---> 66 model.load_state_dict(state, strict=strict)
67 return model
abinet\abinet_env\lib\site-packages\torch\nn\modules\module.py:1604, in Module.load_state_dict(self, state_dict, strict)
1599 error_msgs.insert(
1600 0, 'Missing key(s) in state_dict: {}. '.format(
1601 ', '.join('"{}"'.format(k) for k in missing_keys)))
1603 if len(error_msgs) > 0:
-> 1604 raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
1605 self.class.name, "\n\t".join(error_msgs)))
1606 return _IncompatibleKeys(missing_keys, unexpected_keys)
RuntimeError: Error(s) in loading state_dict for ABINetIterModel:
size mismatch for vision.cls.weight: copying a param with shape torch.Size([37, 512]) from checkpoint, the shape in current model is torch.Size([63, 512]).
size mismatch for vision.cls.bias: copying a param with shape torch.Size([37]) from checkpoint, the shape in current model is torch.Size([63]).
size mismatch for language.proj.weight: copying a param with shape torch.Size([512, 37]) from checkpoint, the shape in current model is torch.Size([512, 63]).
size mismatch for language.cls.weight: copying a param with shape torch.Size([37, 512]) from checkpoint, the shape in current model is torch.Size([63, 512]).
size mismatch for language.cls.bias: copying a param with shape torch.Size([37]) from checkpoint, the shape in current model is torch.Size([63]).
size mismatch for alignment.cls.weight: copying a param with shape torch.Size([37, 512]) from checkpoint, the shape in current model is torch.Size([63, 512]).
size mismatch for alignment.cls.bias: copying a param with shape torch.Size([37]) from checkpoint, the shape in current model is torch.Size([63]).`
The text was updated successfully, but these errors were encountered:
As there are 3 types of character set under the data directory i.e
if I want to use other than charset_36.txt then what arguments need to change under config i.e
config = Config('configs/train_abinet.yaml')
Already tried with
(0): dataset_case_sensitive = True (1): dataset_charset_path = data/charset_62.txt (3): dataset_eval_case_sensitive = True
didn't get output in the capital later by changing and popping up with an error
`RuntimeError Traceback (most recent call last)
Cell In[2], line 1
----> 1 demo.main(input_folder=os.path.join('Test_img/test_img/'))
ABINET\ABINet\demo.py:104, in main(input_folder)
102 logging.info('Construct model.')
103 model = get_model(config).to(device)
--> 104 model = load(model, config.model_checkpoint, device=device)
105 charset = CharsetMapper(filename=config.dataset_charset_path,
106 max_length=config.dataset_max_length + 1)
108 if os.path.isdir(input_folder):
ABINET\ABINet\demo.py:66, in load(model, file, device, strict)
64 if set(state.keys()) == {'model', 'opt'}:
65 state = state['model']
---> 66 model.load_state_dict(state, strict=strict)
67 return model
abinet\abinet_env\lib\site-packages\torch\nn\modules\module.py:1604, in Module.load_state_dict(self, state_dict, strict)
1599 error_msgs.insert(
1600 0, 'Missing key(s) in state_dict: {}. '.format(
1601 ', '.join('"{}"'.format(k) for k in missing_keys)))
1603 if len(error_msgs) > 0:
-> 1604 raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
1605 self.class.name, "\n\t".join(error_msgs)))
1606 return _IncompatibleKeys(missing_keys, unexpected_keys)
RuntimeError: Error(s) in loading state_dict for ABINetIterModel:
size mismatch for vision.cls.weight: copying a param with shape torch.Size([37, 512]) from checkpoint, the shape in current model is torch.Size([63, 512]).
size mismatch for vision.cls.bias: copying a param with shape torch.Size([37]) from checkpoint, the shape in current model is torch.Size([63]).
size mismatch for language.proj.weight: copying a param with shape torch.Size([512, 37]) from checkpoint, the shape in current model is torch.Size([512, 63]).
size mismatch for language.cls.weight: copying a param with shape torch.Size([37, 512]) from checkpoint, the shape in current model is torch.Size([63, 512]).
size mismatch for language.cls.bias: copying a param with shape torch.Size([37]) from checkpoint, the shape in current model is torch.Size([63]).
size mismatch for alignment.cls.weight: copying a param with shape torch.Size([37, 512]) from checkpoint, the shape in current model is torch.Size([63, 512]).
size mismatch for alignment.cls.bias: copying a param with shape torch.Size([37]) from checkpoint, the shape in current model is torch.Size([63]).`
The text was updated successfully, but these errors were encountered: