-
Notifications
You must be signed in to change notification settings - Fork 0
/
eda.py
137 lines (118 loc) · 4.1 KB
/
eda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import os
from tqdm import tqdm
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy.io import wavfile
from python_speech_features import mfcc, logfbank
import librosa
def plot_signals(signals):
fig, axes = plt.subplots(nrows=2, ncols=2, sharex=False,
sharey=True, figsize=(20,5))
fig.suptitle('Time Series', size=16)
i = 0
for x in range(2):
for y in range(2):
axes[x,y].set_title(list(signals.keys())[i])
axes[x,y].plot(list(signals.values())[i])
axes[x,y].get_xaxis().set_visible(False)
axes[x,y].get_yaxis().set_visible(False)
i += 1
def plot_fft(fft):
fig, axes = plt.subplots(nrows=2, ncols=2, sharex=False,
sharey=True, figsize=(20,5))
fig.suptitle('Fourier Transforms', size=16)
i = 0
for x in range(2):
for y in range(2):
data = list(fft.values())[i]
Y, freq = data[0], data[1]
axes[x,y].set_title(list(fft.keys())[i])
axes[x,y].plot(freq, Y)
axes[x,y].get_xaxis().set_visible(False)
axes[x,y].get_yaxis().set_visible(False)
i += 1
def plot_fbank(fbank):
fig, axes = plt.subplots(nrows=2, ncols=2, sharex=False,
sharey=True, figsize=(20,5))
fig.suptitle('Filter Bank Coefficients', size=16)
i = 0
for x in range(2):
for y in range(2):
axes[x,y].set_title(list(fbank.keys())[i])
axes[x,y].imshow(list(fbank.values())[i],
cmap='hot', interpolation='nearest')
axes[x,y].get_xaxis().set_visible(False)
axes[x,y].get_yaxis().set_visible(False)
i += 1
def plot_mfccs(mfccs):
fig, axes = plt.subplots(nrows=2, ncols=2, sharex=False,
sharey=True, figsize=(20,5))
fig.suptitle('Mel Frequency Cepstrum Coefficients', size=16)
i = 0
for x in range(2):
for y in range(2):
axes[x,y].set_title(list(mfccs.keys())[i])
axes[x,y].imshow(list(mfccs.values())[i],
cmap='hot', interpolation='nearest')
axes[x,y].get_xaxis().set_visible(False)
axes[x,y].get_yaxis().set_visible(False)
i += 1
def envelope(y, rate, threshold):
mask = []
y = pd.Series(y).apply(np.abs)
y_mean = y.rolling(window = int(rate/10), min_periods = 1, center = True).mean()
for mean in y_mean:
if mean > threshold:
mask.append(True)
else:
mask.append(False)
return mask
def calc_fft (y, rate):
n = len(y)
freq = np.fft.rfftfreq(n, d = 1/rate)
Y = abs(np.fft.rfft(y)/n)
return (Y,freq)
df = pd.read_csv('singers.csv')
df.set_index('fname', inplace=True)
for f in df.index:
#rate, signal = wavfile.read('wavfiles/'+f)
signal, rate = librosa.load('wavfiles/'+f, sr = 48000)
df.at[f, 'length'] = signal.shape[0]/rate
classes = list(np.unique(df.label))
class_dist = df.groupby(['label'])['length'].mean()
fig, ax = plt.subplots()
ax.set_title('Class Distribution', y=1.08)
ax.pie(class_dist, labels=class_dist.index, autopct='%1.1f%%',
shadow=False, startangle=90)
ax.axis('equal')
plt.show()
df.reset_index(inplace = True)
signals = {}
fft = {}
fbank = {}
mfccs = {}
for c in classes:
wav_file = df[df.label == c].iloc[0,0]
signal, rate = librosa.load('wavfiles/'+wav_file, sr=48000)
mask = envelope(signal, rate, 0.0005)
signal = signal[mask]
signals[c] = signal
fft[c] = calc_fft(signal, rate)
bank = logfbank(signal[:rate], rate, nfilt = 26, nfft = 1200).T
fbank[c] = bank
mel = mfcc(signal[:rate],rate, numcep = 13, nfilt = 26, nfft = 1200).T
mfccs[c] = mel
plot_signals(signals)
plt.show()
plot_fft(fft)
plt.show()
plot_fbank(fbank)
plt.show()
plot_mfccs(mfccs)
plt.show()
if len(os.listdir('clean')) == 0:
for f in tqdm(df.fname):
signal, rate = librosa.load('wavfiles/'+f, sr = 16000)
mask = envelope(signal, rate, 0.0005)
wavfile.write(filename = 'clean/'+f, rate = rate, data = signal[mask])