-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathmain_train.py
95 lines (78 loc) · 2.86 KB
/
main_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
#coding=utf-8
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
from loss import *
from config import opt
import models
import torch
import torch.optim as optim
from data.dataset import ImageDataSet,collate_fn
from torch.utils.data import DataLoader
from torch import nn
from torch.autograd import Variable
from torch.optim import lr_scheduler
import data.dataset
import torch.utils.data as data
import time
import cv2
def train(epochs, model, trainloader, crit, optimizer,scheduler, save_step, weight_decay):
#add(xyf)
#print(model)
for e in range(opt.epoch_num):
print('*' * 10)
print('Epoch {} / {}'.format(e + 1, epochs))
model.train()
start = time.time()
loss = 0.0
total = 0.0
print(len(trainloader))
for i, (img, score_map, geo_map, training_mask) in enumerate(trainloader):
scheduler.step()
optimizer.zero_grad()
img = Variable(img.cuda())
score_map = Variable(score_map.cuda())
geo_map = Variable(geo_map.cuda())
training_mask = Variable(training_mask.cuda())
f_score, f_geometry,_= model(img)
#print(model(img))
loss1 = crit(score_map, f_score, geo_map, f_geometry, training_mask)
loss += loss1.data[0]
loss1.backward()
optimizer.step()
during = time.time() - start
print("Loss : {:.6f}, Time:{:.2f} s ".format(loss / len(trainloader), during))
print()
#writer.add_scalar('loss', loss / len(trainloader), e)
if (e + 1) % save_step == 0:
if not os.path.exists('./save_model'):
os.mkdir('./save_model')
#仅保存和加载模型参数
torch.save(model.state_dict(), './save_model/model_{}.pth'.format(e + 1))
def main(**kwargs):
opt.parse(kwargs)
# step0:set log
#logger = Logger(opt.log_path)
# step1:configure model
model = getattr(models, opt.model)()
# print("after the model!!!")
if os.path.exists(opt.load_model_path):
print("enter load_model_path!")
model.load(opt.load_model_path)
if opt.use_gpu:
model.cuda()
root_path = 'icdar_data'
train_img = root_path + 'images'
train_txt = root_path + 'labels'
trainset = ImageDataSet(train_img, train_txt)
trainloader = DataLoader(
trainset, batch_size=opt.batch_size, shuffle=True, collate_fn=collate_fn, num_workers=opt.num_workers)
crit = LossFunc()
weight_decay = 0
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
scheduler = lr_scheduler.StepLR(optimizer, step_size=10000,gamma=0.94)
train(epochs=opt.epoch_num, model=model, trainloader=trainloader,
crit=crit, optimizer=optimizer, scheduler=scheduler,
save_step=5, weight_decay=weight_decay)
#write.close()
if __name__=="__main__":
main()