-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy patheval.py
64 lines (44 loc) · 1.72 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import argparse
import torch
import logging
import pathlib
import traceback
from models.FOTS import FOTS
from utils.bbox import Toolbox
import os
logging.basicConfig(level=logging.DEBUG, format='')
def load_model(model_path, with_gpu):
logger.info("Loading checkpoint: {} ...".format(model_path))
checkpoints = torch.load(model_path)
if not checkpoints:
raise RuntimeError('No checkpoint found.')
FOTS_model = FOTS()
#FOTS_model = torch.nn.DataParallel(FOTS_model)
FOTS_model.load_state_dict(checkpoints)
if with_gpu:
FOTS_model = FOTS_model.cuda()
return FOTS_model
def main(args:argparse.Namespace):
model_path = args.model
input_dir = args.input_dir
output_dir = args.output_dir
with_image = True if output_dir else False
with_gpu = True if torch.cuda.is_available() else False
model = load_model(model_path, with_gpu)
for image_fn in os.listdir(input_dir):
try:
with torch.no_grad():
ploy, im = Toolbox.predict(image_fn, input_dir,model, with_image, output_dir, with_gpu)
except Exception as e:
traceback.print_exc()
if __name__ == '__main__':
logger = logging.getLogger()
parser = argparse.ArgumentParser(description='Model eval')
parser.add_argument('-m', '--model', default="save_model/model_5.pth", type=str,
help='path to model')
parser.add_argument('-o', '--output_dir', default="test_result/", type=str,
help='output dir for drawn images')
parser.add_argument('-i', '--input_dir', default="test_pic/", type=str, required=False,
help='dir for input images')
args = parser.parse_args()
main(args)