forked from vedderb/nrf52_vesc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathesb_timeslot.c
executable file
·379 lines (315 loc) · 12.9 KB
/
esb_timeslot.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
#include "esb_timeslot.h"
#include "sdk_common.h"
#include "nrf.h"
#include "app_error.h"
#if 0
#ifdef APP_ERROR_CHECK
#undef APP_ERROR_CHECK
#endif
void my_printf(const char* format, ...);
#define APP_ERROR_CHECK(ERR_CODE) \
do \
{ \
if (ERR_CODE != NRF_SUCCESS) \
{ \
my_printf("Error %d: %s L %d\r\n", ERR_CODE, __FILE__, __LINE__); \
} \
} while (0)
#endif
#define TIMESLOT_BEGIN_IRQn LPCOMP_IRQn /**< Re-used LPCOMP interrupt for processing the beginning of timeslot. */
#define TIMESLOT_BEGIN_IRQHandler LPCOMP_IRQHandler /**< The IRQ handler of LPCOMP interrupt */
#define TIMESLOT_BEGIN_IRQPriority 1 /**< Interrupt priority of @ref TIMESLOT_BEGIN_IRQn. */
#define TIMESLOT_END_IRQn QDEC_IRQn /**< Re-used QDEC interrupt for processing the end of timeslot. */
#define TIMESLOT_END_IRQHandler QDEC_IRQHandler /**< The IRQ handler of QDEC interrupt */
#define TIMESLOT_END_IRQPriority 1 /**< Interrupt priority of @ref TIMESLOT_END_IRQn. */
#define UESB_RX_HANDLE_IRQn WDT_IRQn /**< Re-used WDT interrupt for processing the RX data from UESB. */
#define UESB_RX_HANDLE_IRQHandler WDT_IRQHandler /**< The IRQ handler of WDT interrupt */
#define UESB_RX_HANDLE_IRQPriority 3 /**< Interrupt priority of @ref UESB_RX_HANDLE_IRQn. */
#define TS_LEN_US (1000UL) /**< Length of timeslot to be requested. */
#define TX_LEN_EXTENSION_US (1000UL) /**< Length of timeslot to be extended. */
#define TS_SAFETY_MARGIN_US (200UL) /**< The timeslot activity should be finished with this much to spare. */
#define TS_EXTEND_MARGIN_US (500UL) /**< Margin reserved for extension processing. */
static volatile enum {
STATE_IDLE, /**< Default state. */
STATE_RX, /**< Waiting for packets. */
STATE_TX /**< Trying to transmit packet. */
} m_state = STATE_IDLE;
/** Constants for timeslot API */
static nrf_radio_request_t m_timeslot_request; /**< Persistent request structure for softdevice. */
static nrf_esb_config_t nrf_esb_config; /**< Configuration structure for nrf_esb initialization. */
static ut_data_handler_t m_evt_handler = 0; /**< Event handler which passes received data to application. */
static nrf_radio_signal_callback_return_param_t signal_callback_return_param;
static uint32_t m_total_timeslot_length = 0;
void RADIO_IRQHandler(void);
static uint8_t m_base_addr_0[4] = { 0x25, 0, 0, 0 };
static uint8_t m_addr_prefix[8] = { 0x16, 0xC2, 0xC3, 0xC4, 0xC5, 0xC6, 0xC7, 0xC8 };
static uint8_t m_channel = 23;
static nrf_esb_payload_t m_next_payload;
static volatile bool m_next_packet_set;
/**@brief Request next timeslot event in earliest configuration.
* @note Will call softdevice API.
*/
uint32_t request_next_event_earliest(void) {
m_timeslot_request.request_type = NRF_RADIO_REQ_TYPE_EARLIEST;
m_timeslot_request.params.earliest.hfclk = NRF_RADIO_HFCLK_CFG_XTAL_GUARANTEED;
m_timeslot_request.params.earliest.priority = NRF_RADIO_PRIORITY_NORMAL;
m_timeslot_request.params.earliest.length_us = TS_LEN_US;
m_timeslot_request.params.earliest.timeout_us = 1000000;
return sd_radio_request(&m_timeslot_request);
}
/**@brief Configure next timeslot event in earliest configuration.
*/
void configure_next_event_earliest(void) {
m_timeslot_request.request_type = NRF_RADIO_REQ_TYPE_EARLIEST;
m_timeslot_request.params.earliest.hfclk = NRF_RADIO_HFCLK_CFG_XTAL_GUARANTEED;
m_timeslot_request.params.earliest.priority = NRF_RADIO_PRIORITY_NORMAL;
m_timeslot_request.params.earliest.length_us = TS_LEN_US;
m_timeslot_request.params.earliest.timeout_us = 1000000;
}
/**@brief Timeslot signal handler.
*/
void nrf_evt_signal_handler(uint32_t evt_id) {
uint32_t err_code;
switch (evt_id) {
case NRF_EVT_RADIO_SIGNAL_CALLBACK_INVALID_RETURN:
// No implementation needed
break;
case NRF_EVT_RADIO_SESSION_IDLE:
err_code = sd_radio_session_close();
APP_ERROR_CHECK(err_code);
break;
case NRF_EVT_RADIO_SESSION_CLOSED:
// No implementation needed, session ended
break;
case NRF_EVT_RADIO_BLOCKED:
// Fall through
case NRF_EVT_RADIO_CANCELED:
err_code = request_next_event_earliest();
APP_ERROR_CHECK(err_code);
break;
default:
break;
}
}
/**@brief Timeslot event handler.
*/
nrf_radio_signal_callback_return_param_t * radio_callback(uint8_t signal_type) {
switch (signal_type) {
case NRF_RADIO_CALLBACK_SIGNAL_TYPE_START:
/* Start of the timeslot - set up timer interrupt */
signal_callback_return_param.params.request.p_next = NULL;
signal_callback_return_param.callback_action = NRF_RADIO_SIGNAL_CALLBACK_ACTION_NONE;
NRF_TIMER0->TASKS_STOP = 1;
NRF_TIMER0->TASKS_CLEAR = 1;
NRF_TIMER0->MODE = (TIMER_MODE_MODE_Timer << TIMER_MODE_MODE_Pos);
NRF_TIMER0->EVENTS_COMPARE[0] = 0;
NRF_TIMER0->EVENTS_COMPARE[1] = 0;
NRF_TIMER0->INTENSET = TIMER_INTENSET_COMPARE0_Msk | TIMER_INTENSET_COMPARE1_Msk;
NRF_TIMER0->CC[0] = TS_LEN_US - TS_SAFETY_MARGIN_US;
NRF_TIMER0->CC[1] = (TS_LEN_US - TS_EXTEND_MARGIN_US);
NRF_TIMER0->BITMODE = (TIMER_BITMODE_BITMODE_24Bit << TIMER_BITMODE_BITMODE_Pos);
NRF_TIMER0->TASKS_START = 1;
NRF_RADIO->POWER = (RADIO_POWER_POWER_Enabled << RADIO_POWER_POWER_Pos);
/* Call TIMESLOT_BEGIN_IRQHandler later. */
NVIC_EnableIRQ(TIMER0_IRQn);
NVIC_SetPendingIRQ(TIMESLOT_BEGIN_IRQn);
break;
case NRF_RADIO_CALLBACK_SIGNAL_TYPE_RADIO:
signal_callback_return_param.params.request.p_next = NULL;
signal_callback_return_param.callback_action = NRF_RADIO_SIGNAL_CALLBACK_ACTION_NONE;
RADIO_IRQHandler();
break;
case NRF_RADIO_CALLBACK_SIGNAL_TYPE_TIMER0:
if (NRF_TIMER0->EVENTS_COMPARE[0]
&& (NRF_TIMER0->INTENSET
& (TIMER_INTENSET_COMPARE0_Enabled
<< TIMER_INTENCLR_COMPARE0_Pos))) {
NRF_TIMER0->TASKS_STOP = 1;
NRF_TIMER0->EVENTS_COMPARE[0] = 0;
/* This is the "timeslot is about to end" timeout. */
if (!nrf_esb_is_idle()) {
NRF_RADIO->INTENCLR = 0xFFFFFFFF;
NRF_RADIO->TASKS_DISABLE = 1;
}
/* Schedule next timeslot. */
configure_next_event_earliest();
signal_callback_return_param.params.request.p_next = &m_timeslot_request;
signal_callback_return_param.callback_action = NRF_RADIO_SIGNAL_CALLBACK_ACTION_REQUEST_AND_END;
}
if (NRF_TIMER0->EVENTS_COMPARE[1] && (NRF_TIMER0->INTENSET
& (TIMER_INTENSET_COMPARE1_Enabled
<< TIMER_INTENCLR_COMPARE1_Pos))) {
NRF_TIMER0->EVENTS_COMPARE[1] = 0;
/* This is the "Time to extend timeslot" timeout. */
if (m_total_timeslot_length < (128000000UL - 1UL - TX_LEN_EXTENSION_US)) {
/* Request timeslot extension if total length does not exceed 128 seconds. */
signal_callback_return_param.params.extend.length_us = TX_LEN_EXTENSION_US;
signal_callback_return_param.callback_action = NRF_RADIO_SIGNAL_CALLBACK_ACTION_EXTEND;
} else {
/* Return with no action request. */
signal_callback_return_param.params.request.p_next = NULL;
signal_callback_return_param.callback_action = NRF_RADIO_SIGNAL_CALLBACK_ACTION_NONE;
}
}
break;
case NRF_RADIO_CALLBACK_SIGNAL_TYPE_EXTEND_SUCCEEDED:
NRF_TIMER0->TASKS_STOP = 1;
NRF_TIMER0->EVENTS_COMPARE[0] = 0;
NRF_TIMER0->EVENTS_COMPARE[1] = 0;
NRF_TIMER0->CC[0] += (TX_LEN_EXTENSION_US - 25);
NRF_TIMER0->CC[1] += (TX_LEN_EXTENSION_US - 25);
NRF_TIMER0->TASKS_START = 1;
m_total_timeslot_length += TX_LEN_EXTENSION_US;
NVIC_SetPendingIRQ(TIMESLOT_BEGIN_IRQn);
signal_callback_return_param.params.request.p_next = NULL;
signal_callback_return_param.callback_action = NRF_RADIO_SIGNAL_CALLBACK_ACTION_NONE;
break;
case NRF_RADIO_CALLBACK_SIGNAL_TYPE_EXTEND_FAILED: {
/* Tried scheduling a new timeslot, but failed. */
/* Disabling UESB is done in a lower interrupt priority. */
/* Call TIMESLOT_END_IRQHandler later. */
NVIC_SetPendingIRQ(TIMESLOT_END_IRQn);
signal_callback_return_param.params.request.p_next = NULL;
signal_callback_return_param.callback_action = NRF_RADIO_SIGNAL_CALLBACK_ACTION_NONE;
} break;
default:
/* No implementation needed. */
break;
}
return (&signal_callback_return_param);
}
uint32_t esb_timeslot_sd_start(void) {
uint32_t err_code;
err_code = sd_radio_session_open(radio_callback);
if (err_code != NRF_SUCCESS) {
return err_code;
}
err_code = request_next_event_earliest();
if (err_code != NRF_SUCCESS) {
(void) sd_radio_session_close();
return err_code;
}
return NRF_SUCCESS;
}
uint32_t esb_timeslot_sd_stop(void) {
return sd_radio_session_close();
}
/**@brief IRQHandler used for execution context management.
* Any available handler can be used as we're not using the associated hardware.
* This handler is used to stop and disable UESB.
*/
void TIMESLOT_END_IRQHandler(void) {
uint32_t err_code;
/* Timeslot is about to end: stop UESB. */
if (m_state == STATE_RX) {
err_code = nrf_esb_stop_rx();
}
err_code = nrf_esb_flush_tx();
APP_ERROR_CHECK(err_code);
err_code = nrf_esb_flush_rx();
APP_ERROR_CHECK(err_code);
err_code = nrf_esb_disable();
APP_ERROR_CHECK(err_code);
m_total_timeslot_length = 0;
m_state = STATE_IDLE;
}
/**@brief IRQHandler used for execution context management.
* Any available handler can be used as we're not using the associated hardware.
* This handler is used to initiate UESB RX/TX.
*/
void TIMESLOT_BEGIN_IRQHandler(void) {
if (m_state == STATE_IDLE) {
nrf_esb_init(&nrf_esb_config);
nrf_esb_set_address_length(3);
nrf_esb_set_rf_channel(m_channel);
nrf_esb_set_base_address_0(m_base_addr_0);
nrf_esb_set_base_address_1(m_base_addr_0);
nrf_esb_set_prefixes(m_addr_prefix, 1);
if (!m_next_packet_set) {
nrf_esb_start_rx();
m_state = STATE_RX;
} else {
m_state = STATE_TX;
}
}
CRITICAL_REGION_ENTER();
if (m_next_packet_set) {
m_next_packet_set = false;
if (m_state == STATE_RX) {
nrf_esb_stop_rx();
m_state = STATE_TX;
}
nrf_esb_write_payload(&m_next_payload);
} else {
if (m_state == STATE_TX) {
nrf_esb_start_rx();
m_state = STATE_RX;
}
}
CRITICAL_REGION_EXIT();
}
void esb_timeslot_set_next_packet(uint8_t *data, unsigned int len) {
if (len >= 32 || m_next_packet_set) {
return;
}
memcpy(m_next_payload.data, data, len);
m_next_payload.pipe = 0;
m_next_payload.noack = false;
m_next_payload.length = len;
m_next_packet_set = true;
}
void esb_timeslot_set_ch_addr(uint8_t ch, uint8_t b0, uint8_t b1, uint8_t b2) {
m_channel = ch;
m_addr_prefix[0] = b0;
m_base_addr_0[0] = b1;
m_base_addr_0[1] = b2;
}
void nrf_esb_event_handler(nrf_esb_evt_t const * p_event) {
if (p_event->evt_id == NRF_ESB_EVENT_TX_FAILED) {
nrf_esb_flush_tx();
}
if (p_event->evt_id == NRF_ESB_EVENT_TX_SUCCESS) {
}
if (p_event->evt_id & NRF_ESB_EVENT_RX_RECEIVED) {
/* Data reception is handled in a lower priority interrupt. */
/* Call UESB_RX_HANDLE_IRQHandler later. */
NVIC_SetPendingIRQ(UESB_RX_HANDLE_IRQn);
}
}
uint32_t esb_timeslot_init(ut_data_handler_t evt_handler) {
nrf_esb_config_t tmp_config = NRF_ESB_DEFAULT_CONFIG;
m_evt_handler = evt_handler;
memcpy(&nrf_esb_config, &tmp_config, sizeof(nrf_esb_config_t));
nrf_esb_config.protocol = NRF_ESB_PROTOCOL_ESB_DPL;
nrf_esb_config.retransmit_delay = 1000;
nrf_esb_config.retransmit_count = 1;
nrf_esb_config.tx_mode = NRF_ESB_TXMODE_AUTO;
nrf_esb_config.bitrate = NRF_ESB_BITRATE_1MBPS;
nrf_esb_config.event_handler = nrf_esb_event_handler;
nrf_esb_config.mode = NRF_ESB_MODE_PTX;
nrf_esb_config.selective_auto_ack = false;
nrf_esb_config.crc = NRF_ESB_CRC_8BIT;
#ifdef NRF52840_XXAA
nrf_esb_config.tx_output_power = NRF_ESB_TX_POWER_8DBM;
#else
nrf_esb_config.tx_output_power = NRF_ESB_TX_POWER_4DBM;
#endif
// Using three available interrupt handlers for interrupt level management
// These can be any available IRQ as we're not using any of the hardware,
// simply triggering them through software
NVIC_ClearPendingIRQ(TIMESLOT_END_IRQn);
NVIC_SetPriority(TIMESLOT_END_IRQn, 1);
NVIC_EnableIRQ(TIMESLOT_END_IRQn);
NVIC_ClearPendingIRQ(TIMESLOT_BEGIN_IRQn);
NVIC_SetPriority(TIMESLOT_BEGIN_IRQn, 1);
NVIC_EnableIRQ(TIMESLOT_BEGIN_IRQn);
NVIC_ClearPendingIRQ(UESB_RX_HANDLE_IRQn);
NVIC_SetPriority(UESB_RX_HANDLE_IRQn, 1);
NVIC_EnableIRQ(UESB_RX_HANDLE_IRQn);
return NRF_SUCCESS;
}
void UESB_RX_HANDLE_IRQHandler(void) {
nrf_esb_payload_t rx_payload;
nrf_esb_read_rx_payload(&rx_payload);
m_evt_handler(rx_payload.data, rx_payload.length);
}