forked from Matthelonianxl/gasstation-express-oracle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gasExpress.py
256 lines (208 loc) · 9.14 KB
/
gasExpress.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import time
import sys
import json
import math
import traceback
import os
import pandas as pd
import numpy as np
from web3 import Web3, HTTPProvider
web3 = Web3(HTTPProvider('http://localhost:8545'))
### These are the threholds used for % blocks accepting to define the recommended gas prices. can be edited here if desired
SAFELOW = 35
STANDARD = 60
FAST = 90
class Timers():
"""
class to keep track of time relative to network block
"""
def __init__(self, start_block):
self.start_block = start_block
self.current_block = start_block
self.process_block = start_block
def update_time(self, block):
self.current_block = block
self.process_block = self.process_block + 1
class CleanTx():
"""transaction object / methods for pandas"""
def __init__(self, tx_obj):
self.hash = tx_obj.hash
self.block_mined = tx_obj.blockNumber
self.gas_price = tx_obj['gasPrice']
self.round_gp_10gwei()
def to_dataframe(self):
data = {self.hash: {'block_mined':self.block_mined, 'gas_price':self.gas_price, 'round_gp_10gwei':self.gp_10gwei}}
return pd.DataFrame.from_dict(data, orient='index')
def round_gp_10gwei(self):
"""Rounds the gas price to gwei"""
gp = self.gas_price/1e8
if gp >= 1 and gp < 10:
gp = np.floor(gp)
elif gp >= 10:
gp = gp/10
gp = np.floor(gp)
gp = gp*10
else:
gp = 0
self.gp_10gwei = gp
class CleanBlock():
"""block object/methods for pandas"""
def __init__(self, block_obj, timemined, mingasprice=None):
self.block_number = block_obj.number
self.time_mined = timemined
self.blockhash = block_obj.hash
self.mingasprice = mingasprice
def to_dataframe(self):
data = {0:{'block_number':self.block_number, 'blockhash':self.blockhash, 'time_mined':self.time_mined, 'mingasprice':self.mingasprice}}
return pd.DataFrame.from_dict(data, orient='index')
def write_to_json(gprecs, prediction_table):
"""write json data"""
try:
prediction_table['gasprice'] = prediction_table['gasprice']/10
prediction_tableout = prediction_table.to_json(orient='records')
filepath_gprecs = 'ethgasAPI.json'
filepath_prediction_table = 'predictTable.json'
with open(filepath_gprecs, 'w') as outfile:
json.dump(gprecs, outfile)
with open(filepath_prediction_table, 'w') as outfile:
outfile.write(prediction_tableout)
except Exception as e:
print(e)
def process_block_transactions(block):
"""get tx data from block"""
block_df = pd.DataFrame()
block_obj = web3.eth.getBlock(block, True)
for transaction in block_obj.transactions:
clean_tx = CleanTx(transaction)
block_df = block_df.append(clean_tx.to_dataframe(), ignore_index = False)
block_df['time_mined'] = block_obj.timestamp
return(block_df, block_obj)
def process_block_data(block_df, block_obj):
"""process block to dataframe"""
if len(block_obj.transactions) > 0:
block_mingasprice = block_df['round_gp_10gwei'].min()
else:
block_mingasprice = np.nan
timemined = block_df['time_mined'].min()
clean_block = CleanBlock(block_obj, timemined, block_mingasprice)
return(clean_block.to_dataframe())
def get_hpa(gasprice, hashpower):
"""gets the hash power accpeting the gas price over last 200 blocks"""
hpa = hashpower.loc[gasprice >= hashpower.index, 'hashp_pct']
if gasprice > hashpower.index.max():
hpa = 100
elif gasprice < hashpower.index.min():
hpa = 0
else:
hpa = hpa.max()
return int(hpa)
def analyze_last200blocks(block, blockdata):
recent_blocks = blockdata.loc[blockdata['block_number'] > (block-200), ['mingasprice', 'block_number']]
#create hashpower accepting dataframe based on mingasprice accepted in block
hashpower = recent_blocks.groupby('mingasprice').count()
hashpower = hashpower.rename(columns={'block_number': 'count'})
hashpower['cum_blocks'] = hashpower['count'].cumsum()
totalblocks = hashpower['count'].sum()
hashpower['hashp_pct'] = hashpower['cum_blocks']/totalblocks*100
#get avg blockinterval time
blockinterval = recent_blocks.sort_values('block_number').diff()
blockinterval.loc[blockinterval['block_number'] > 1, 'time_mined'] = np.nan
blockinterval.loc[blockinterval['time_mined']< 0, 'time_mined'] = np.nan
avg_timemined = blockinterval['time_mined'].mean()
if np.isnan(avg_timemined):
avg_timemined = 15
return(hashpower, avg_timemined)
def make_predictTable(block, alltx, hashpower, avg_timemined):
#predictiontable
predictTable = pd.DataFrame({'gasprice' : range(10, 1010, 10)})
ptable2 = pd.DataFrame({'gasprice' : range(0, 10, 1)})
predictTable = predictTable.append(ptable2).reset_index(drop=True)
predictTable = predictTable.sort_values('gasprice').reset_index(drop=True)
predictTable['hashpower_accepting'] = predictTable['gasprice'].apply(get_hpa, args=(hashpower,))
return(predictTable)
def get_gasprice_recs(prediction_table, block_time, block):
def get_safelow():
series = prediction_table.loc[prediction_table['hashpower_accepting'] >= SAFELOW, 'gasprice']
safelow = series.min()
return float(safelow)
def get_average():
series = prediction_table.loc[prediction_table['hashpower_accepting'] >= STANDARD, 'gasprice']
average = series.min()
return float(average)
def get_fast():
series = prediction_table.loc[prediction_table['hashpower_accepting'] >= FAST, 'gasprice']
fastest = series.min()
return float(fastest)
def get_fastest():
hpmax = prediction_table['hashpower_accepting'].max()
fastest = prediction_table.loc[prediction_table['hashpower_accepting'] == hpmax, 'gasprice'].values[0]
return float(fastest)
gprecs = {}
gprecs['safeLow'] = get_safelow()/10
gprecs['standard'] = get_average()/10
gprecs['fast'] = get_fast()/10
gprecs['fastest'] = get_fastest()/10
gprecs['block_time'] = block_time
gprecs['blockNum'] = block
return(gprecs)
def master_control():
def init (block):
nonlocal alltx
nonlocal blockdata
print("\n\n**** ETH Gas Station Express Oracle ****")
print ("\nSafelow = " +str(SAFELOW)+ "% of blocks accepting. Usually confirms in less than 30min.")
print ("Standard= " +str(STANDARD)+ "% of blocks accepting. Usually confirms in less than 5 min.")
print ("Fast = " +str(FAST)+ "% of blocks accepting. Usually confirms in less than 1 minute")
print ("Fastest = all blocks accepting. As fast as possible but you are probably overpaying.")
print("\nnow loading gasprice data from last 100 blocks...give me a minute")
for pastblock in range((block-100), (block), 1):
(mined_blockdf, block_obj) = process_block_transactions(pastblock)
alltx = alltx.combine_first(mined_blockdf)
block_sumdf = process_block_data(mined_blockdf, block_obj)
blockdata = blockdata.append(block_sumdf, ignore_index = True)
print ("done. now reporting gasprice recs in gwei: \n")
print ("\npress ctrl-c at any time to stop monitoring\n")
print ("**** And the oracle says...**** \n")
def append_new_tx(clean_tx):
nonlocal alltx
if not clean_tx.hash in alltx.index:
alltx = alltx.append(clean_tx.to_dataframe(), ignore_index = False)
def update_dataframes(block):
nonlocal alltx
nonlocal blockdata
nonlocal timer
try:
#get minedtransactions and blockdata from previous block
mined_block_num = block-3
(mined_blockdf, block_obj) = process_block_transactions(mined_block_num)
alltx = alltx.combine_first(mined_blockdf)
#process block data
block_sumdf = process_block_data(mined_blockdf, block_obj)
#add block data to block dataframe
blockdata = blockdata.append(block_sumdf, ignore_index = True)
#get hashpower table from last 200 blocks
(hashpower, block_time) = analyze_last200blocks(block, blockdata)
predictiondf = make_predictTable(block, alltx, hashpower, block_time)
#get gpRecs
gprecs = get_gasprice_recs (predictiondf, block_time, block)
print(gprecs)
#every block, write gprecs, predictions
write_to_json(gprecs, predictiondf)
return True
except:
print(traceback.format_exc())
alltx = pd.DataFrame()
blockdata = pd.DataFrame()
timer = Timers(web3.eth.blockNumber)
start_time = time.time()
init (web3.eth.blockNumber)
while True:
try:
block = web3.eth.blockNumber
if (timer.process_block < block):
updated = update_dataframes(timer.process_block)
timer.process_block = timer.process_block + 1
except:
pass
time.sleep(1)
master_control()