-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathImageCompressor.py
170 lines (130 loc) · 5.68 KB
/
ImageCompressor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
from scipy.fftpack import dct, idct
class ImageCompressor:
def __init__(self, img_path):
self.img_path = img_path
self.image_array = np.asarray(Image.open(self.img_path))
self.SVD = {'r': None, 'g': None, 'b': None}
self.compressed_image = None
self.k = None
def rSVD(self, X, r, q, p):
# random projection
ny = X.shape[1]
P = np.random.randn(ny, r + p)
Z = X @ P
for k in range(q):
Z = X @ (X.T @ Z)
# qr decomposition
Q, R = np.linalg.qr(Z, mode='reduced')
Y = Q.T @ X
UY, S, VT = np.linalg.svd(Y, full_matrices=0)
U = Q @ UY
return U, S, VT
def compute_svd(self, k):
if self.SVD['r'] is None:
for i, color in enumerate(('r', 'g', 'b')):
self.SVD[color] = self.rSVD(self.image_array[:, :, i], k, 1, 5)
def _compress(self, k):
if self.compressed_image is None or self.k != k:
self.compute_svd(k)
self.k = k
rimg = np.zeros_like(self.image_array)
for i, color in enumerate(('r', 'g', 'b')):
U, S, VT = self.SVD[color]
rimg[:, :, i] = np.dot(U[:, :k], np.dot(np.diag(S[:k]), VT[:k, :]))
rimg = np.clip(rimg, 0, 255)
self.compressed_image = rimg.astype(np.uint8)
return self.compressed_image
def SVDcompress(self, k):
return self._compress(k)
def plot_singular_values(self):
self.compute_svd(100)
for color, label in zip(('r', 'g', 'b'), ('Red', 'Green', 'Blue')):
_, S, _ = self.SVD[color]
plt.plot(S[:100], label=label)
plt.legend()
plt.title('Singular Values')
plt.show()
def plot_compressed_image(self, k):
compressed_image = self.SVDcompress(k)
plt.imshow(compressed_image)
plt.show()
def plot_original_image(self):
plt.imshow(self.image_array)
plt.show()
def norm(self, k):
compressed_image = self._compress(k)
return np.linalg.norm(self.image_array - compressed_image)
def save_compressed_image(self, k):
compressed_image = self._compress(k)
Image.fromarray(compressed_image).save(f"rSVD_{self.img_path}_k{k:04}.jpg")
def compare_images(self, k):
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
ax[0].imshow(self.image_array)
ax[0].set_title('Original Image')
ax[0].axis('off')
compressed_image = self.SVDcompress(k)
ax[1].imshow(compressed_image)
ax[1].set_title('Compressed Image')
ax[1].axis('off')
plt.show()
def compression_ratio(self, k):
original_size = np.prod(self.image_array.shape)
compressed_size = k * (1 + sum(self.image_array.shape))
return original_size / compressed_size
def apply_grayscale(self):
gray = np.dot(self.image_array[...,:3], [0.2989, 0.5870, 0.1140])
plt.imshow(gray, cmap=plt.get_cmap('gray'))
plt.show()
def add_noise(self, mean=0, std=1):
# add Gaussian noise to image
noisy_img = self.image_array + np.random.normal(mean, std, self.image_array.shape)
noisy_img_clipped = np.clip(noisy_img, 0, 255)
return noisy_img_clipped.astype(np.uint8)
def calculate_psnr(self, k):
compressed_image = self._compress(k)
mse = np.mean((self.image_array - compressed_image) ** 2)
PIXEL_MAX = 255.0
return np.where(mse == 0, 100, 20 * np.log10(PIXEL_MAX / np.sqrt(mse)))
def dct2(self, block):
return dct(dct(block.T, norm='ortho').T, norm='ortho')
def idct2(self, block):
return idct(idct(block.T, norm='ortho').T, norm='ortho')
def DCTcompress(self, k):
imsize = self.image_array.shape
dct_img = np.zeros(imsize)
for i in range(3):
dct_img[:,:,i] = self.dct2(self.image_array[:,:,i])
# Threshold
dct_img[:,:,0] = np.multiply(dct_img[:,:,0], np.abs(dct_img[:,:,0]) > k)
dct_img[:,:,1] = np.multiply(dct_img[:,:,1], np.abs(dct_img[:,:,1]) > k)
dct_img[:,:,2] = np.multiply(dct_img[:,:,2], np.abs(dct_img[:,:,2]) > k)
compressed_img = np.zeros(imsize)
for i in range(3):
compressed_img[:,:,i] = self.idct2(dct_img[:,:,i])
return compressed_img
def PCAcompress(self, k):
img = self.image_array
original_shape = img.shape
img_flattened = img.reshape(-1, original_shape[-1]) # Flatten image
# Normalize the data
img_normalized = img_flattened - np.mean(img_flattened, axis=0)
# Compute the covariance matrix
cov_matrix = np.cov(img_normalized.T)
# Compute the eigenvectors and eigenvalues of the covariance matrix
eigenvalues, eigenvectors = np.linalg.eig(cov_matrix)
# Sort eigenvalues and corresponding eigenvectors
sorted_indices = np.argsort(eigenvalues)[::-1]
sorted_eigenvalues = eigenvalues[sorted_indices]
sorted_eigenvectors = eigenvectors[:, sorted_indices]
# Select the first k eigenvectors
eigenvectors_subset = sorted_eigenvectors[:, :k]
# Transform the data to the first k eigenvectors
img_transformed = np.dot(img_normalized, eigenvectors_subset)
# Reconstruct the image
img_reconstructed = np.dot(img_transformed, eigenvectors_subset.T) + np.mean(img_flattened, axis=0)
# Reshape image to original shape
img_reconstructed_reshaped = img_reconstructed.reshape(original_shape)
return img_reconstructed_reshaped.astype(np.uint8)