-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrigger_avg_TF_erp.m
173 lines (165 loc) · 6.73 KB
/
trigger_avg_TF_erp.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
function [erp_tf, synch_eeg, trigger_time_sec, time_vec, freq_vec, varargout] = trigger_avg_TF_erp(eeg, fs, onset_time, varargin)
%
% [erp_tf, synch_eeg, trigger_time_sec, time_vec, freq_vec] = trigger_avg_TF_erp(eeg, fs, onset_time)
% [erp_tf, synch_eeg, trigger_time_sec, time_vec, freq_vec, synch_emg] = trigger_avg_TF_erp(eeg, fs, onset_time, duration, method, emg)
%
% *************************************************************************
% * Trigger-averaged ERP Time/Frequency Representation *
% *************************************************************************
%
% Usage: [erp_tf, synch_eeg, trigger_time_sec, time_vec, freq_vec] = trigger_avg_TF_erp(eeg, fs, onset_time)
% [erp_tf, synch_eeg, trigger_time_sec, time_vec, freq_vec, synch_emg] = trigger_avg_TF_erp(eeg, fs, onset_time, duration, method, emg)
% inputs:
% 'eeg': cell array containing eeg channels of interest from all
% trials
% 'fs': sampling frequency (Hz)
% 'onset_time': vector of onset times where each element is the
% onset for that corresponding trial (Seconds)
% (opt) 'duration': required signal duration after movement onset
% (default: duration = 2 Seconds)
% (opt) 'method': method for T/F representation, (options: 'STFT', 'CWT'
% 'NBCH') (default: method = 'STFT')
% (opt) 'emg': cell array containing emg channel of interest from all
% trials (default: emg = {})
% outputs:
% 'erp_tf': estimated ERP time-frequency map
% 'synch_eeg': synchronized eeg signals based on trigger time
% 'trigger_time_sec': trigger onset flag (Seconds)
% 'time_vec': time vector required for ERP plots
% 'freq_vec': frequency vector required for ERP map plots
% 'synch_emg': synchronized emg signals based on trigger time
% Note:
% an empty bracket [] Must be assigned to not-specified values
%
% This program is provided by ESMAEIL SERAJ. Please make sure to cite BOTH
% the original studies and the User Manual to help others find these items.
%
% Authors:
% Esmaeil Seraj, Karthiga Mahalingam
% Websites:
% https://github.com/EsiSeraj/ERP_Connectivity_EMG_Analysis
% http://oset.ir/category.php?dir=Tools
%
% Copyright (C) <2018> <ESMAEIL SERAJ ([email protected])>
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/> or
% write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth
% Floor, Boston, MA 02110-1301, USA.
%
%% Checking inputs and assigning default values
if nargin < 3
error('***wrong number of input arguments. Refer to Manual for details***')
elseif nargin == 3
duration = 2;
method = 'STFT';
emg = {};
elseif nargin > 3
if size(varargin, 2) ~= 3
error('***an empty bracket [] Must be assigned to not-specified values***')
else
if isempty(varargin{1})
duration = 2;
else
duration = varargin{1};
end
if isempty(varargin{2})
method = 'STFT';
else
method = varargin{2};
end
if isempty(varargin{3})
emg = {};
else
emg = varargin{3};
end
end
end
if (~(iscell(eeg) && iscell(emg)))
error('***input EEG/EMG data have to be stored in a cell with each array correspond to one trial***')
end
if (~(isscalar(fs) && isscalar(duration) && isscalar(onset_time)))
error('***specified sampling frequency and duration have to be scalars***')
end
if ~ischar(method)
error('***specified time-frequency representation method have to be a string; avaiable options: <STFT> <CWT> <NBCH>***')
else
if(~(strcmp(freq_band, 'STFT') || strcmp(freq_band, 'CWT') || strcmp(freq_band, 'NBCH')))
error('***typo in your specified time-frequency representation method string***')
end
end
%% synchronizing eeg signals based on trigger-time
if isempty(emg)
[ensemble_eeg, synch_eeg, trigger_time_sec, time_vec] = trigger_synch(eeg, fs, onset_time, duration, emg);
else
[ensemble_eeg, synch_eeg, trigger_time_sec, time_vec, synch_emg] = trigger_synch(eeg, fs, onset_time, duration, emg);
varargout = synch_emg;
end
[M, N] = size(ensemble_eeg);
%% calculating the T/F representation using three different methods
if (strcmp(method, 'STFT'))
% T/F using STFT method
window = hamming(1024); % time resolution: about 250ms
noverlap = 1020;
f = 2048; % frequency resolution
erp_tf_all = cell(1, M);
for i=1:M
[erp_tf_all{i}, freq_vec, time_vec] = spectrogram(ensemble_eeg(i, :), window, noverlap, f, fs);
end
erp_tf = zeros(size(erp_tf_all{1}));
for j=1:M
erp_tf = erp_tf + erp_tf_all{j};
end
erp_tf = erp_tf/M;
elseif (strcmp(method, 'CWT'))
% THIS SECTION IS NOT TESTED
% T/F using CWT method
erp_tf_all = cell(1, M);
scales = 1:64;
samplingperiod = 1/fs;
wname = 'db45'; % available options (other versions of MATLAB): 'morse', 'amor', and 'bump'
for i=1:M
[erp_tf_all{i}, ~, freq_vec] = cwt(ensemble_eeg(i, :), scales, wname, samplingperiod, 'scal');
end
erp_tf = zeros(size(erp_tf_all{1}));
for j=1:M
erp_tf = erp_tf + erp_tf_all{j};
end
erp_tf = erp_tf/M;
elseif (strcmp(method, 'NBCH'))
% T/F using NBCH method
f0 = 1:40; % frequency range of interest
bw = 4; % filter bandwidth
CIC_ord = 10; % CIC filter order
bp_filtered_ens = cell(1, M);
for k=1:M
for i=1:f0(end)
bp_filtered_ens{k}(i, :) = BPFilter5(ensemble_eeg(k, :) , f0(i)/fs, bw/fs, CIC_ord);
end
bp_filtered_ens{k} = bp_filtered_ens{k}.^2;
end
erp_tf_pow = zeros(f0(end), N);
for j=1:f0(end)
erp_pow_sum = zeros(1, N);
for c=1:M
erp_pow_sum = erp_pow_sum + bp_filtered_ens{c}(j, :);
erp_tf_pow(j, :) = erp_pow_sum;
end
end
erp_tf_pow = erp_tf_pow/M;
approach = 'mn';
L = [500 500]; % about 250ms time windows
erp_tf = BaseLine2(erp_tf_pow, L(1), L(2), approach);
freq_vec = f0; % frequency vector
end
end