diff --git a/STAR_Protocol.ipynb b/STAR_Protocol.ipynb index 52f542f..27ec2a6 100644 --- a/STAR_Protocol.ipynb +++ b/STAR_Protocol.ipynb @@ -13,7 +13,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 3, "id": "11bea910-8418-4248-9a28-2d474c3fe468", "metadata": { "tags": [] @@ -35,7 +35,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "id": "4a98efe7-6528-4b31-8226-45d7a50adc51", "metadata": {}, "outputs": [ @@ -55,7 +55,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "id": "c01efadf-4699-4f41-86ba-9ad07d935646", "metadata": {}, "outputs": [], @@ -66,7 +66,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "id": "63e1754a-bbf3-4382-b033-3ab701c27016", "metadata": {}, "outputs": [ @@ -87,7 +87,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 7, "id": "849d6319-719d-4f35-8c56-d5545ac9af32", "metadata": { "tags": [] @@ -111,17 +111,17 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 8, "id": "1a04d04c-c726-47a3-9d5c-95d6ca58af5a", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 9, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, @@ -153,7 +153,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 9, "id": "47ab6453-00f8-4cc1-a2ce-5bfb44b16db3", "metadata": { "tags": [] @@ -178,7 +178,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 10, "id": "40018130-22c1-4e04-bfea-c47e44c1adc4", "metadata": {}, "outputs": [ @@ -200,7 +200,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 11, "id": "9c51539c-1087-4c92-a4b0-955176701a3a", "metadata": {}, "outputs": [ @@ -209,326 +209,56 @@ "output_type": "stream", "text": [ "Fitting 5 folds for each of 135 candidates, totalling 675 fits\n", - "[CV 4/5; 1/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=10, seed=42\n", - "[CV 4/5; 1/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.908 total time= 0.4s\n", - "[CV 1/5; 3/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=50, seed=42\n", - "[CV 1/5; 3/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.909 total time= 1.3s\n", - "[CV 4/5; 4/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42\n", - "[CV 4/5; 4/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.931 total time= 1.8s\n", - "[CV 4/5; 6/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=10, seed=42\n", - "[CV 4/5; 6/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=10, seed=42;, score=0.885 total time= 0.2s\n", - "[CV 2/5; 7/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=25, seed=42\n", - "[CV 2/5; 7/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=25, seed=42;, score=0.886 total time= 0.6s\n", - "[CV 1/5; 8/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=50, seed=42\n", - "[CV 1/5; 8/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.875 total time= 0.9s\n", - "[CV 3/5; 9/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=100, seed=42\n", - "[CV 3/5; 9/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=100, seed=42;, score=0.943 total time= 1.4s\n", - "[CV 2/5; 11/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=10, seed=42\n", - "[CV 2/5; 11/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=10, seed=42;, score=0.898 total time= 0.3s\n", - "[CV 5/5; 11/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=10, seed=42\n", - "[CV 5/5; 11/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=10, seed=42;, score=0.931 total time= 0.3s\n", - "[CV 2/5; 12/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=25, seed=42\n", - "[CV 2/5; 12/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=25, seed=42;, score=0.886 total time= 0.7s\n", - "[CV 2/5; 13/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=50, seed=42\n", - "[CV 2/5; 13/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=50, seed=42;, score=0.909 total time= 0.9s\n", - "[CV 4/5; 14/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=100, seed=42\n", - "[CV 4/5; 14/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=100, seed=42;, score=0.954 total time= 1.5s\n", - "[CV 2/5; 16/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=10, seed=42\n", - "[CV 2/5; 16/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.898 total time= 0.3s\n", - "[CV 5/5; 16/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=10, seed=42\n", - "[CV 5/5; 16/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.885 total time= 0.5s\n", - "[CV 3/5; 17/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=25, seed=42\n", - "[CV 3/5; 17/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.931 total time= 0.9s\n", - "[CV 1/5; 19/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=100, seed=42\n", - "[CV 1/5; 19/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.920 total time= 2.0s\n", - "[CV 4/5; 20/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=200, seed=42\n", - "[CV 4/5; 20/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.943 total time= 2.1s\n", - "[CV 2/5; 24/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=100, seed=42\n", - "[CV 2/5; 24/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=100, seed=42;, score=0.909 total time= 1.2s\n", - "[CV 5/5; 25/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=200, seed=42\n", - "[CV 5/5; 25/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=200, seed=42;, score=0.943 total time= 1.8s\n", - "[CV 2/5; 29/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=100, seed=42\n", - "[CV 2/5; 29/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=100, seed=42;, score=0.909 total time= 1.0s\n", - "[CV 5/5; 30/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=200, seed=42\n", - "[CV 5/5; 30/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=200, seed=42;, score=0.943 total time= 1.4s\n", - "[CV 3/5; 34/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=100, seed=42\n", - "[CV 3/5; 34/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.931 total time= 1.4s\n", - "[CV 1/5; 36/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=10, seed=42\n", - "[CV 1/5; 36/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=10, seed=42;, score=0.886 total time= 0.3s\n", - "[CV 2/5; 36/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=10, seed=42\n", - "[CV 2/5; 36/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=10, seed=42;, score=0.886 total time= 0.2s\n", - "[CV 3/5; 36/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=10, seed=42\n", - "[CV 3/5; 36/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=10, seed=42;, score=0.908 total time= 0.2s\n", - "[CV 1/5; 37/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=25, seed=42\n", - "[CV 1/5; 37/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=25, seed=42;, score=0.875 total time= 0.6s\n", - "[CV 4/5; 37/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=25, seed=42\n", - "[CV 4/5; 37/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=25, seed=42;, score=0.920 total time= 0.6s\n", - "[CV 5/5; 38/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=50, seed=42\n", - "[CV 5/5; 38/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.943 total time= 0.9s\n", - "[CV 3/5; 40/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=200, seed=42\n", - "[CV 3/5; 40/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=200, seed=42;, score=0.954 total time= 1.7s\n", - "[CV 4/5; 43/135] START learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=50, seed=42\n", - "[CV 4/5; 43/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=50, seed=42;, score=0.920 total time= 0.7s\n", - "[CV 2/5; 45/135] START learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=200, seed=42\n", - "[CV 2/5; 45/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=200, seed=42;, score=0.909 total time= 1.6s\n", - "[CV 1/5; 48/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=50, seed=42\n", - "[CV 1/5; 48/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.920 total time= 0.5s\n", - "[CV 3/5; 49/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42\n", - "[CV 3/5; 49/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.954 total time= 0.9s\n", - "[CV 1/5; 51/135] START learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=10, seed=42\n", - "[CV 1/5; 51/135] END learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=10, seed=42;, score=0.898 total time= 0.2s\n", - "[CV 4/5; 51/135] START learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=10, seed=42\n", - "[CV 4/5; 51/135] END learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=10, seed=42;, score=0.908 total time= 0.2s[CV 1/5; 1/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=10, seed=42\n", - "[CV 1/5; 1/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.898 total time= 0.5s\n", - "[CV 4/5; 2/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42\n", - "[CV 4/5; 2/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.920 total time= 0.9s\n", - "[CV 5/5; 3/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=50, seed=42\n", - "[CV 5/5; 3/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.966 total time= 1.2s\n", - "[CV 3/5; 5/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=200, seed=42\n", - "[CV 3/5; 5/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.943 total time= 2.5s\n", - "[CV 4/5; 8/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=50, seed=42\n", - "[CV 4/5; 8/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.943 total time= 1.0s\n", - "[CV 2/5; 10/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=200, seed=42\n", - "[CV 2/5; 10/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=200, seed=42;, score=0.920 total time= 2.3s\n", + "[CV 5/5; 1/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=10, seed=42\n", + "[CV 5/5; 1/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.943 total time= 0.2s\n", + "[CV 5/5; 2/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42\n", + "[CV 5/5; 2/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.954 total time= 0.4s\n", + "[CV 2/5; 4/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42\n", + "[CV 2/5; 4/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.920 total time= 1.0s\n", + "[CV 5/5; 5/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=200, seed=42\n", + "[CV 5/5; 5/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.966 total time= 1.7s\n", + "[CV 5/5; 9/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=100, seed=42\n", + "[CV 5/5; 9/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=100, seed=42;, score=0.943 total time= 1.1s\n", + "[CV 3/5; 11/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=10, seed=42\n", + "[CV 3/5; 11/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=10, seed=42;, score=0.897 total time= 0.2s\n", + "[CV 1/5; 12/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=25, seed=42\n", + "[CV 1/5; 12/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=25, seed=42;, score=0.886 total time= 0.4s\n", "[CV 1/5; 13/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=50, seed=42\n", - "[CV 1/5; 13/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=50, seed=42;, score=0.875 total time= 0.9s\n", + "[CV 1/5; 13/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=50, seed=42;, score=0.875 total time= 0.6s\n", "[CV 3/5; 14/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=100, seed=42\n", - "[CV 3/5; 14/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=100, seed=42;, score=0.931 total time= 1.6s\n", + "[CV 3/5; 14/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=100, seed=42;, score=0.931 total time= 0.8s\n", "[CV 1/5; 16/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=10, seed=42\n", - "[CV 1/5; 16/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.898 total time= 0.3s\n", + "[CV 1/5; 16/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.898 total time= 0.2s\n", "[CV 4/5; 16/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=10, seed=42\n", - "[CV 4/5; 16/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.885 total time= 0.4s\n", + "[CV 4/5; 16/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.885 total time= 0.3s\n", "[CV 2/5; 17/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=25, seed=42\n", - "[CV 2/5; 17/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.932 total time= 1.0s\n", + "[CV 2/5; 17/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.932 total time= 0.6s\n", "[CV 4/5; 18/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=50, seed=42\n", - "[CV 4/5; 18/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.931 total time= 1.5s\n", + "[CV 4/5; 18/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.931 total time= 0.9s\n", "[CV 2/5; 20/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=200, seed=42\n", - "[CV 2/5; 20/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.920 total time= 2.1s\n", + "[CV 2/5; 20/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.920 total time= 1.8s\n", "[CV 1/5; 23/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=50, seed=42\n", - "[CV 1/5; 23/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.875 total time= 0.9s\n", + "[CV 1/5; 23/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.875 total time= 0.8s\n", "[CV 4/5; 24/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=100, seed=42\n", - "[CV 4/5; 24/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=100, seed=42;, score=0.943 total time= 1.1s\n", - "[CV 3/5; 26/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=10, seed=42\n", - "[CV 3/5; 26/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=10, seed=42;, score=0.908 total time= 0.2s\n", - "[CV 1/5; 27/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=25, seed=42\n", - "[CV 1/5; 27/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=25, seed=42;, score=0.898 total time= 0.5s\n", - "[CV 1/5; 28/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=50, seed=42\n", - "[CV 1/5; 28/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=50, seed=42;, score=0.875 total time= 0.8s\n", - "[CV 3/5; 29/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=100, seed=42\n", - "[CV 3/5; 29/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=100, seed=42;, score=0.920 total time= 1.0s\n", - "[CV 1/5; 31/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=10, seed=42\n", - "[CV 1/5; 31/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.886 total time= 0.3s\n", - "[CV 5/5; 31/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=10, seed=42\n", - "[CV 5/5; 31/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.897 total time= 0.2s\n", - "[CV 2/5; 32/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=25, seed=42\n", - "[CV 2/5; 32/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.909 total time= 0.6s\n", - "[CV 4/5; 33/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=50, seed=42\n", - "[CV 4/5; 33/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.931 total time= 1.1s\n", - "[CV 2/5; 35/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=200, seed=42\n", - "[CV 2/5; 35/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.920 total time= 2.0s\n", - "[CV 1/5; 38/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=50, seed=42\n", - "[CV 1/5; 38/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.886 total time= 0.9s\n", - "[CV 4/5; 39/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=100, seed=42\n", - "[CV 4/5; 39/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=100, seed=42;, score=0.931 total time= 1.2s\n", - "[CV 3/5; 41/135] START learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=10, seed=42\n", - "[CV 3/5; 41/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=10, seed=42;, score=0.908 total time= 0.2s\n", - "[CV 1/5; 42/135] START learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=25, seed=42\n", - "[CV 1/5; 42/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=25, seed=42;, score=0.886 total time= 0.4s\n", - "[CV 1/5; 43/135] START learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=50, seed=42\n", - "[CV 1/5; 43/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=50, seed=42;, score=0.875 total time= 0.7s\n", - "[CV 4/5; 44/135] START learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=100, seed=42\n", - "[CV 4/5; 44/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=100, seed=42;, score=0.943 total time= 1.0s\n", - "[CV 1/5; 46/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=10, seed=42\n", - "[CV 1/5; 46/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.898 total time= 0.2s\n", - "[CV 4/5; 46/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=10, seed=42\n", - "[CV 4/5; 46/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.908 total time= 0.2s\n", - "[CV 2/5; 47/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42\n", - "[CV 2/5; 47/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.909 total time= 0.5s\n", - "[CV 2/5; 48/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=50, seed=42\n", - "[CV 2/5; 48/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.920 total time= 0.5s\n", - "[CV 4/5; 49/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42\n", - "[CV 4/5; 49/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.931 total time= 0.9s[CV 5/5; 1/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=10, seed=42\n", - "[CV 5/5; 1/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.943 total time= 0.5s\n", - "[CV 2/5; 3/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=50, seed=42\n", - "[CV 2/5; 3/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.920 total time= 1.3s\n", - "[CV 5/5; 4/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42\n", - "[CV 5/5; 4/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.954 total time= 1.8s\n", - "[CV 5/5; 6/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=10, seed=42\n", - "[CV 5/5; 6/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=10, seed=42;, score=0.897 total time= 0.2s\n", - "[CV 3/5; 7/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=25, seed=42\n", - "[CV 3/5; 7/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=25, seed=42;, score=0.920 total time= 0.7s\n", - "[CV 2/5; 8/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=50, seed=42\n", - "[CV 2/5; 8/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.909 total time= 0.9s\n", - "[CV 5/5; 9/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=100, seed=42\n", - "[CV 5/5; 9/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=100, seed=42;, score=0.943 total time= 1.4s\n", - "[CV 3/5; 11/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=10, seed=42\n", - "[CV 3/5; 11/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=10, seed=42;, score=0.897 total time= 0.3s\n", - "[CV 1/5; 12/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=25, seed=42\n", - "[CV 1/5; 12/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=25, seed=42;, score=0.886 total time= 0.7s\n", - "[CV 4/5; 12/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=25, seed=42\n", - "[CV 4/5; 12/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=25, seed=42;, score=0.908 total time= 0.5s\n", - "[CV 5/5; 13/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=50, seed=42\n", - "[CV 5/5; 13/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=50, seed=42;, score=0.954 total time= 1.2s\n", - "[CV 3/5; 15/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=200, seed=42\n", - "[CV 3/5; 15/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=200, seed=42;, score=0.931 total time= 2.2s\n", - "[CV 1/5; 18/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=50, seed=42\n", - "[CV 1/5; 18/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.898 total time= 1.5s\n", - "[CV 4/5; 19/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=100, seed=42\n", - "[CV 4/5; 19/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.943 total time= 1.7s\n", - "[CV 4/5; 21/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=10, seed=42\n", - "[CV 4/5; 21/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=10, seed=42;, score=0.897 total time= 0.2s\n", - "[CV 2/5; 22/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=25, seed=42\n", - "[CV 2/5; 22/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=25, seed=42;, score=0.909 total time= 0.5s\n", - "[CV 5/5; 22/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=25, seed=42\n", - "[CV 5/5; 22/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=25, seed=42;, score=0.943 total time= 0.6s\n", - "[CV 1/5; 24/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=100, seed=42\n", - "[CV 1/5; 24/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=100, seed=42;, score=0.875 total time= 1.1s\n", - "[CV 4/5; 25/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=200, seed=42\n", - "[CV 4/5; 25/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=200, seed=42;, score=0.943 total time= 2.0s\n", - "[CV 4/5; 29/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=100, seed=42\n", - "[CV 4/5; 29/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=100, seed=42;, score=0.943 total time= 1.0s\n", - "[CV 2/5; 31/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=10, seed=42\n", - "[CV 2/5; 31/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.898 total time= 0.2s\n", - "[CV 4/5; 31/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=10, seed=42\n", - "[CV 4/5; 31/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.897 total time= 0.2s\n", - "[CV 3/5; 32/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=25, seed=42\n", - "[CV 3/5; 32/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.943 total time= 0.6s\n", - "[CV 5/5; 33/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=50, seed=42\n", - "[CV 5/5; 33/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.954 total time= 1.1s\n", - "[CV 3/5; 35/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=200, seed=42\n", - "[CV 3/5; 35/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.943 total time= 2.1s\n", - "[CV 3/5; 38/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=50, seed=42\n", - "[CV 3/5; 38/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.920 total time= 1.0s\n", - "[CV 2/5; 40/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=200, seed=42\n", - "[CV 2/5; 40/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=200, seed=42;, score=0.920 total time= 1.6s\n", - "[CV 5/5; 42/135] START learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=25, seed=42\n", - "[CV 5/5; 42/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=25, seed=42;, score=0.931 total time= 0.4s\n", - "[CV 1/5; 44/135] START learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=100, seed=42\n", - "[CV 1/5; 44/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=100, seed=42;, score=0.875 total time= 0.9s\n", - "[CV 4/5; 45/135] START learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=200, seed=42\n", - "[CV 4/5; 45/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=200, seed=42;, score=0.954 total time= 1.6s\n", - "[CV 2/5; 49/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42\n", - "[CV 2/5; 49/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.920 total time= 0.8s\n", - "[CV 5/5; 50/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=200, seed=42\n", - "[CV 5/5; 50/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.954 total time= 1.3s\n", - "[CV 2/5; 54/135] START learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=100, seed=42\n", - "[CV 2/5; 54/135] END learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=100, seed=42;, score=0.909 total time= 0.7s\n", - "[CV 5/5; 55/135] START learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=200, seed=42\n", - "[CV 5/5; 55/135] END learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=200, seed=42;, score=0.943 total time= 1.1s\n", - "[CV 5/5; 59/135] START learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=100, seed=42\n", - "[CV 5/5; 59/135] END learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=100, seed=42;, score=0.931 total time= 0.8s[CV 1/5; 2/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42\n", - "[CV 1/5; 2/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.898 total time= 1.0s\n", - "[CV 4/5; 3/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=50, seed=42\n", - "[CV 4/5; 3/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.943 total time= 1.2s\n", - "[CV 2/5; 5/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=200, seed=42\n", - "[CV 2/5; 5/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.932 total time= 2.4s\n", - "[CV 3/5; 8/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=50, seed=42\n", - "[CV 3/5; 8/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.966 total time= 1.0s\n", - "[CV 1/5; 10/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=200, seed=42\n", - "[CV 1/5; 10/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=200, seed=42;, score=0.875 total time= 2.2s\n", - "[CV 5/5; 12/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=25, seed=42\n", - "[CV 5/5; 12/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=25, seed=42;, score=0.954 total time= 0.5s\n", - "[CV 1/5; 14/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=100, seed=42\n", - "[CV 1/5; 14/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=100, seed=42;, score=0.864 total time= 1.5s\n", - "[CV 4/5; 15/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=200, seed=42\n", - "[CV 4/5; 15/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=200, seed=42;, score=0.954 total time= 2.2s\n", - "[CV 3/5; 18/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=50, seed=42\n", - "[CV 3/5; 18/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.931 total time= 1.5s\n", - "[CV 1/5; 20/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=200, seed=42\n", - "[CV 1/5; 20/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.920 total time= 2.1s\n", - "[CV 2/5; 23/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=50, seed=42\n", - "[CV 2/5; 23/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.909 total time= 0.9s\n", - "[CV 5/5; 24/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=100, seed=42\n", - "[CV 5/5; 24/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=100, seed=42;, score=0.943 total time= 1.1s\n", - "[CV 4/5; 26/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=10, seed=42\n", - "[CV 4/5; 26/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=10, seed=42;, score=0.862 total time= 0.2s\n", - "[CV 2/5; 27/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=25, seed=42\n", - "[CV 2/5; 27/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=25, seed=42;, score=0.920 total time= 0.5s\n", - "[CV 2/5; 28/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=50, seed=42\n", - "[CV 2/5; 28/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=50, seed=42;, score=0.909 total time= 0.8s\n", - "[CV 5/5; 29/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=100, seed=42\n", - "[CV 5/5; 29/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=100, seed=42;, score=0.943 total time= 1.0s\n", - "[CV 3/5; 31/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=10, seed=42\n", - "[CV 3/5; 31/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.920 total time= 0.2s\n", - "[CV 1/5; 32/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=25, seed=42\n", - "[CV 1/5; 32/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.898 total time= 0.6s\n", - "[CV 2/5; 33/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=50, seed=42\n", - "[CV 2/5; 33/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.920 total time= 1.0s\n", - "[CV 5/5; 34/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=100, seed=42\n", - "[CV 5/5; 34/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.954 total time= 1.5s\n", - "[CV 5/5; 36/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=10, seed=42\n", - "[CV 5/5; 36/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=10, seed=42;, score=0.931 total time= 0.3s\n", - "[CV 3/5; 37/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=25, seed=42\n", - "[CV 3/5; 37/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=25, seed=42;, score=0.920 total time= 0.6s\n", - "[CV 4/5; 38/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=50, seed=42\n", - "[CV 4/5; 38/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.943 total time= 1.0s\n", - "[CV 1/5; 40/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=200, seed=42\n", - "[CV 1/5; 40/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=200, seed=42;, score=0.864 total time= 1.6s\n", - "[CV 4/5; 42/135] START learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=25, seed=42\n", - "[CV 4/5; 42/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=25, seed=42;, score=0.908 total time= 0.4s\n", - "[CV 5/5; 43/135] START learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=50, seed=42\n", - "[CV 5/5; 43/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=50, seed=42;, score=0.943 total time= 0.6s\n", - "[CV 3/5; 45/135] START learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=200, seed=42\n", - "[CV 3/5; 45/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=200, seed=42;, score=0.943 total time= 1.6s\n", - "[CV 3/5; 48/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=50, seed=42\n", - "[CV 3/5; 48/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.954 total time= 0.5s\n", - "[CV 5/5; 49/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42\n", - "[CV 5/5; 49/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.954 total time= 0.9s\n", - "[CV 3/5; 51/135] START learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=10, seed=42\n", - "[CV 3/5; 51/135] END learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=10, seed=42;, score=0.931 total time= 0.2s\n", - "[CV 1/5; 52/135] START learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=25, seed=42\n", - "[CV 1/5; 52/135] END learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=25, seed=42;, score=0.886 total time= 0.3s\n", - "[CV 1/5; 53/135] START learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=50, seed=42\n", - "[CV 1/5; 53/135] END learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.875 total time= 0.4s\n", - "[CV 4/5; 54/135] START learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=100, seed=42\n", - "[CV 4/5; 54/135] END learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=100, seed=42;, score=0.943 total time= 0.7s\n", - "[CV 2/5; 56/135] START learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=10, seed=42\n", - "[CV 2/5; 56/135] END learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=10, seed=42;, score=0.898 total time= 0.2s\n", - "[CV 5/5; 56/135] START learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=10, seed=42\n", - "[CV 5/5; 56/135] END learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=10, seed=42;, score=0.943 total time= 0.1s[CV 3/5; 1/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=10, seed=42\n", - "[CV 3/5; 1/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.908 total time= 0.5s\n", - "[CV 3/5; 3/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=50, seed=42\n", - "[CV 3/5; 3/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.931 total time= 1.3s\n", - "[CV 1/5; 5/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=200, seed=42\n", - "[CV 1/5; 5/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.909 total time= 2.4s\n", - "[CV 4/5; 7/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=25, seed=42\n", - "[CV 4/5; 7/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=25, seed=42;, score=0.908 total time= 0.6s\n", - "[CV 5/5; 8/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=50, seed=42\n", - "[CV 5/5; 8/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.943 total time= 1.0s\n", - "[CV 3/5; 10/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=200, seed=42\n", - "[CV 3/5; 10/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=200, seed=42;, score=0.954 total time= 2.2s\n", - "[CV 4/5; 13/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=50, seed=42\n", - "[CV 4/5; 13/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=50, seed=42;, score=0.954 total time= 1.1s\n", - "[CV 2/5; 15/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=200, seed=42\n", - "[CV 2/5; 15/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=200, seed=42;, score=0.909 total time= 2.2s\n", - "[CV 5/5; 17/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=25, seed=42\n", - "[CV 5/5; 17/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.943 total time= 0.8s\n", - "[CV 2/5; 19/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=100, seed=42\n", - "[CV 2/5; 19/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.920 total time= 2.0s\n", - "[CV 5/5; 20/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=200, seed=42\n", - "[CV 5/5; 20/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.954 total time= 2.2s\n", - "[CV 3/5; 24/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=100, seed=42\n", - "[CV 3/5; 24/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=100, seed=42;, score=0.954 total time= 1.2s\n", - "[CV 1/5; 26/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=10, seed=42\n", - "[CV 1/5; 26/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=10, seed=42;, score=0.875 total time= 0.2s\n", + "[CV 4/5; 24/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=100, seed=42;, score=0.943 total time= 1.0s\n", "[CV 2/5; 26/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=10, seed=42\n", "[CV 2/5; 26/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=10, seed=42;, score=0.886 total time= 0.2s\n", "[CV 5/5; 26/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=10, seed=42\n", "[CV 5/5; 26/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=10, seed=42;, score=0.920 total time= 0.2s\n", "[CV 3/5; 27/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=25, seed=42\n", - "[CV 3/5; 27/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=25, seed=42;, score=0.920 total time= 0.5s\n", + "[CV 3/5; 27/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=25, seed=42;, score=0.920 total time= 0.4s\n", "[CV 3/5; 28/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=50, seed=42\n", - "[CV 3/5; 28/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=50, seed=42;, score=0.931 total time= 0.8s\n", + "[CV 3/5; 28/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=50, seed=42;, score=0.931 total time= 0.7s\n", "[CV 1/5; 30/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=200, seed=42\n", - "[CV 1/5; 30/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=200, seed=42;, score=0.864 total time= 1.3s\n", + "[CV 1/5; 30/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=200, seed=42;, score=0.864 total time= 1.2s\n", "[CV 4/5; 32/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=25, seed=42\n", "[CV 4/5; 32/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.908 total time= 0.6s\n", "[CV 1/5; 34/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=100, seed=42\n", - "[CV 1/5; 34/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.909 total time= 1.5s\n", + "[CV 1/5; 34/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.909 total time= 1.3s\n", "[CV 4/5; 35/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=200, seed=42\n", - "[CV 4/5; 35/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.943 total time= 2.2s\n", + "[CV 4/5; 35/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.943 total time= 1.8s\n", "[CV 3/5; 39/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=100, seed=42\n", - "[CV 3/5; 39/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=100, seed=42;, score=0.943 total time= 1.2s\n", + "[CV 3/5; 39/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=100, seed=42;, score=0.943 total time= 1.1s\n", "[CV 1/5; 41/135] START learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=10, seed=42\n", "[CV 1/5; 41/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=10, seed=42;, score=0.875 total time= 0.2s\n", "[CV 2/5; 41/135] START learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=10, seed=42\n", @@ -540,228 +270,498 @@ "[CV 3/5; 43/135] START learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=50, seed=42\n", "[CV 3/5; 43/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=50, seed=42;, score=0.931 total time= 0.7s\n", "[CV 1/5; 45/135] START learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=200, seed=42\n", - "[CV 1/5; 45/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=200, seed=42;, score=0.864 total time= 1.5s\n", + "[CV 1/5; 45/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=200, seed=42;, score=0.864 total time= 1.3s\n", "[CV 4/5; 47/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42\n", - "[CV 4/5; 47/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.943 total time= 0.4s\n", + "[CV 4/5; 47/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.943 total time= 0.3s\n", "[CV 5/5; 48/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=50, seed=42\n", "[CV 5/5; 48/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.954 total time= 0.5s\n", "[CV 3/5; 50/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=200, seed=42\n", - "[CV 3/5; 50/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.954 total time= 1.4s\n", + "[CV 3/5; 50/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.954 total time= 1.1s\n", "[CV 2/5; 53/135] START learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=50, seed=42\n", - "[CV 2/5; 53/135] END learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.909 total time= 0.4s\n", - "[CV 5/5; 54/135] START learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=100, seed=42\n", - "[CV 5/5; 54/135] END learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=100, seed=42;, score=0.943 total time= 0.7s\n", - "[CV 3/5; 56/135] START learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=10, seed=42\n", - "[CV 3/5; 56/135] END learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=10, seed=42;, score=0.920 total time= 0.1s\n", - "[CV 1/5; 57/135] START learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=25, seed=42\n", - "[CV 1/5; 57/135] END learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=25, seed=42;, score=0.886 total time= 0.3s[CV 3/5; 2/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42\n", - "[CV 3/5; 2/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.897 total time= 1.0s\n", - "[CV 1/5; 4/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42\n", - "[CV 1/5; 4/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.909 total time= 1.7s\n", - "[CV 5/5; 5/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=200, seed=42\n", - "[CV 5/5; 5/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.966 total time= 2.4s\n", + "[CV 2/5; 53/135] END learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.909 total time= 0.4s[CV 1/5; 1/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=10, seed=42\n", + "[CV 1/5; 1/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.898 total time= 0.2s\n", + "[CV 4/5; 2/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42\n", + "[CV 4/5; 2/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.920 total time= 0.4s\n", + "[CV 3/5; 4/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42\n", + "[CV 3/5; 4/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.943 total time= 1.1s\n", + "[CV 1/5; 6/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=10, seed=42\n", + "[CV 1/5; 6/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=10, seed=42;, score=0.898 total time= 0.2s\n", + "[CV 2/5; 6/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=10, seed=42\n", + "[CV 2/5; 6/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=10, seed=42;, score=0.864 total time= 0.2s\n", + "[CV 5/5; 6/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=10, seed=42\n", + "[CV 5/5; 6/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=10, seed=42;, score=0.897 total time= 0.2s\n", + "[CV 3/5; 7/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=25, seed=42\n", + "[CV 3/5; 7/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=25, seed=42;, score=0.920 total time= 0.4s\n", + "[CV 2/5; 8/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=50, seed=42\n", + "[CV 2/5; 8/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.909 total time= 0.7s\n", "[CV 4/5; 9/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=100, seed=42\n", - "[CV 4/5; 9/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=100, seed=42;, score=0.943 total time= 1.4s\n", - "[CV 1/5; 11/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=10, seed=42\n", - "[CV 1/5; 11/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=10, seed=42;, score=0.886 total time= 0.3s\n", - "[CV 4/5; 11/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=10, seed=42\n", - "[CV 4/5; 11/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=10, seed=42;, score=0.874 total time= 0.3s\n", + "[CV 4/5; 9/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=100, seed=42;, score=0.943 total time= 1.0s\n", + "[CV 2/5; 11/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=10, seed=42\n", + "[CV 2/5; 11/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=10, seed=42;, score=0.898 total time= 0.2s\n", + "[CV 5/5; 11/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=10, seed=42\n", + "[CV 5/5; 11/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=10, seed=42;, score=0.931 total time= 0.2s\n", "[CV 3/5; 12/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=25, seed=42\n", - "[CV 3/5; 12/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=25, seed=42;, score=0.897 total time= 0.7s\n", + "[CV 3/5; 12/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=25, seed=42;, score=0.897 total time= 0.4s\n", "[CV 3/5; 13/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=50, seed=42\n", - "[CV 3/5; 13/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=50, seed=42;, score=0.920 total time= 1.0s\n", + "[CV 3/5; 13/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=50, seed=42;, score=0.920 total time= 0.6s\n", + "[CV 1/5; 15/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=200, seed=42\n", + "[CV 1/5; 15/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=200, seed=42;, score=0.864 total time= 1.6s\n", + "[CV 5/5; 17/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=25, seed=42\n", + "[CV 5/5; 17/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.943 total time= 0.5s\n", + "[CV 3/5; 19/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=100, seed=42\n", + "[CV 3/5; 19/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.943 total time= 1.3s\n", + "[CV 1/5; 21/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=10, seed=42\n", + "[CV 1/5; 21/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=10, seed=42;, score=0.886 total time= 0.3s\n", + "[CV 2/5; 21/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=10, seed=42\n", + "[CV 2/5; 21/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=10, seed=42;, score=0.886 total time= 0.2s\n", + "[CV 4/5; 21/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=10, seed=42\n", + "[CV 4/5; 21/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=10, seed=42;, score=0.897 total time= 0.2s\n", + "[CV 2/5; 22/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=25, seed=42\n", + "[CV 2/5; 22/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=25, seed=42;, score=0.909 total time= 0.5s\n", + "[CV 2/5; 23/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=50, seed=42\n", + "[CV 2/5; 23/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.909 total time= 0.8s\n", + "[CV 5/5; 24/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=100, seed=42\n", + "[CV 5/5; 24/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=100, seed=42;, score=0.943 total time= 1.0s\n", + "[CV 3/5; 26/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=10, seed=42\n", + "[CV 3/5; 26/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=10, seed=42;, score=0.908 total time= 0.2s\n", + "[CV 1/5; 27/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=25, seed=42\n", + "[CV 1/5; 27/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=25, seed=42;, score=0.898 total time= 0.4s\n", + "[CV 1/5; 28/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=50, seed=42\n", + "[CV 1/5; 28/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=50, seed=42;, score=0.875 total time= 0.6s\n", + "[CV 4/5; 29/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=100, seed=42\n", + "[CV 4/5; 29/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=100, seed=42;, score=0.943 total time= 0.9s\n", + "[CV 2/5; 31/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=10, seed=42\n", + "[CV 2/5; 31/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.898 total time= 0.2s\n", + "[CV 5/5; 31/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=10, seed=42\n", + "[CV 5/5; 31/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.897 total time= 0.2s\n", + "[CV 3/5; 32/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=25, seed=42\n", + "[CV 3/5; 32/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.943 total time= 0.6s\n", + "[CV 5/5; 33/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=50, seed=42\n", + "[CV 5/5; 33/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.954 total time= 0.9s\n", + "[CV 3/5; 35/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=200, seed=42\n", + "[CV 3/5; 35/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.943 total time= 1.8s\n", + "[CV 3/5; 38/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=50, seed=42\n", + "[CV 3/5; 38/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.920 total time= 0.8s\n", + "[CV 1/5; 40/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=200, seed=42\n", + "[CV 1/5; 40/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=200, seed=42;, score=0.864 total time= 1.5s\n", + "[CV 4/5; 42/135] START learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=25, seed=42\n", + "[CV 4/5; 42/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=25, seed=42;, score=0.908 total time= 0.5s\n", + "[CV 4/5; 43/135] START learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=50, seed=42\n", + "[CV 4/5; 43/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=50, seed=42;, score=0.920 total time= 0.7s[CV 3/5; 2/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42\n", + "[CV 3/5; 2/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.897 total time= 0.4s\n", + "[CV 1/5; 4/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42\n", + "[CV 1/5; 4/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.909 total time= 1.1s\n", + "[CV 4/5; 5/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=200, seed=42\n", + "[CV 4/5; 5/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.931 total time= 1.7s\n", + "[CV 2/5; 9/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=100, seed=42\n", + "[CV 2/5; 9/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=100, seed=42;, score=0.898 total time= 1.0s\n", + "[CV 5/5; 10/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=200, seed=42\n", + "[CV 5/5; 10/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=200, seed=42;, score=0.943 total time= 1.5s\n", "[CV 5/5; 14/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=100, seed=42\n", - "[CV 5/5; 14/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=100, seed=42;, score=0.943 total time= 1.5s\n", + "[CV 5/5; 14/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=100, seed=42;, score=0.943 total time= 0.8s\n", "[CV 3/5; 16/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=10, seed=42\n", - "[CV 3/5; 16/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.908 total time= 0.3s\n", + "[CV 3/5; 16/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.908 total time= 0.2s\n", "[CV 1/5; 17/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=25, seed=42\n", - "[CV 1/5; 17/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.898 total time= 1.0s\n", + "[CV 1/5; 17/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.898 total time= 0.8s\n", "[CV 2/5; 18/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=50, seed=42\n", - "[CV 2/5; 18/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.920 total time= 1.6s\n", + "[CV 2/5; 18/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.920 total time= 0.9s\n", "[CV 5/5; 19/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=100, seed=42\n", - "[CV 5/5; 19/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.954 total time= 1.6s\n", + "[CV 5/5; 19/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.954 total time= 1.3s\n", "[CV 5/5; 21/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=10, seed=42\n", "[CV 5/5; 21/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=10, seed=42;, score=0.943 total time= 0.2s\n", "[CV 3/5; 22/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=25, seed=42\n", - "[CV 3/5; 22/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=25, seed=42;, score=0.920 total time= 0.6s\n", - "[CV 4/5; 23/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=50, seed=42\n", - "[CV 4/5; 23/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.931 total time= 0.9s\n", - "[CV 2/5; 25/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=200, seed=42\n", - "[CV 2/5; 25/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=200, seed=42;, score=0.920 total time= 1.6s\n", + "[CV 3/5; 22/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=25, seed=42;, score=0.920 total time= 0.5s\n", + "[CV 3/5; 23/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=50, seed=42\n", + "[CV 3/5; 23/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.931 total time= 0.8s\n", + "[CV 1/5; 25/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=200, seed=42\n", + "[CV 1/5; 25/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=200, seed=42;, score=0.875 total time= 1.4s\n", "[CV 5/5; 27/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=25, seed=42\n", - "[CV 5/5; 27/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=25, seed=42;, score=0.931 total time= 0.6s\n", + "[CV 5/5; 27/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=25, seed=42;, score=0.931 total time= 0.4s\n", "[CV 1/5; 29/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=100, seed=42\n", - "[CV 1/5; 29/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=100, seed=42;, score=0.875 total time= 1.0s\n", + "[CV 1/5; 29/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=100, seed=42;, score=0.875 total time= 0.9s\n", "[CV 4/5; 30/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=200, seed=42\n", - "[CV 4/5; 30/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=200, seed=42;, score=0.954 total time= 1.4s\n", + "[CV 4/5; 30/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=200, seed=42;, score=0.954 total time= 1.3s\n", "[CV 3/5; 33/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=50, seed=42\n", - "[CV 3/5; 33/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.931 total time= 1.1s\n", - "[CV 1/5; 35/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=200, seed=42\n", - "[CV 1/5; 35/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.909 total time= 2.0s\n", + "[CV 3/5; 33/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.931 total time= 1.0s\n", + "[CV 2/5; 35/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=200, seed=42\n", + "[CV 2/5; 35/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.920 total time= 1.7s\n", "[CV 5/5; 37/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=25, seed=42\n", - "[CV 5/5; 37/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=25, seed=42;, score=0.943 total time= 0.6s\n", - "[CV 1/5; 39/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=100, seed=42\n", - "[CV 1/5; 39/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=100, seed=42;, score=0.875 total time= 1.2s\n", - "[CV 4/5; 40/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=200, seed=42\n", - "[CV 4/5; 40/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=200, seed=42;, score=0.943 total time= 1.7s\n", - "[CV 3/5; 44/135] START learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=100, seed=42\n", - "[CV 3/5; 44/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=100, seed=42;, score=0.943 total time= 1.0s\n", - "[CV 3/5; 46/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=10, seed=42\n", - "[CV 3/5; 46/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.943 total time= 0.2s\n", - "[CV 1/5; 47/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42\n", - "[CV 1/5; 47/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.920 total time= 0.5s\n", - "[CV 5/5; 47/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42\n", - "[CV 5/5; 47/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.954 total time= 0.4s\n", - "[CV 1/5; 49/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42\n", - "[CV 1/5; 49/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.920 total time= 0.8s\n", - "[CV 4/5; 50/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=200, seed=42\n", - "[CV 4/5; 50/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.931 total time= 1.3s\n", - "[CV 3/5; 54/135] START learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=100, seed=42\n", - "[CV 3/5; 54/135] END learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=100, seed=42;, score=0.954 total time= 0.7s\n", - "[CV 1/5; 56/135] START learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=10, seed=42\n", - "[CV 1/5; 56/135] END learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=10, seed=42;, score=0.864 total time= 0.1s\n", - "[CV 4/5; 56/135] START learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=10, seed=42\n", - "[CV 4/5; 56/135] END learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=10, seed=42;, score=0.897 total time= 0.1s\n", - "[CV 2/5; 57/135] START learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=25, seed=42\n", - "[CV 2/5; 57/135] END learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=25, seed=42;, score=0.898 total time= 0.3s[CV 2/5; 1/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=10, seed=42\n", - "[CV 2/5; 1/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.898 total time= 0.5s\n", - "[CV 5/5; 2/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42\n", - "[CV 5/5; 2/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.954 total time= 0.9s\n", - "[CV 3/5; 4/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42\n", - "[CV 3/5; 4/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.943 total time= 1.8s\n", - "[CV 1/5; 6/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=10, seed=42\n", - "[CV 1/5; 6/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=10, seed=42;, score=0.898 total time= 0.3s\n", - "[CV 2/5; 6/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=10, seed=42\n", - "[CV 2/5; 6/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=10, seed=42;, score=0.864 total time= 0.3s\n", - "[CV 3/5; 6/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=10, seed=42\n", - "[CV 3/5; 6/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=10, seed=42;, score=0.908 total time= 0.2s\n", - "[CV 1/5; 7/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=25, seed=42\n", - "[CV 1/5; 7/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=25, seed=42;, score=0.886 total time= 0.6s\n", - "[CV 5/5; 7/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=25, seed=42\n", - "[CV 5/5; 7/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=25, seed=42;, score=0.943 total time= 0.6s\n", - "[CV 1/5; 9/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=100, seed=42\n", - "[CV 1/5; 9/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=100, seed=42;, score=0.875 total time= 1.3s\n", - "[CV 4/5; 10/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=200, seed=42\n", - "[CV 4/5; 10/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=200, seed=42;, score=0.943 total time= 2.4s\n", - "[CV 2/5; 14/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=100, seed=42\n", - "[CV 2/5; 14/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=100, seed=42;, score=0.909 total time= 1.6s\n", - "[CV 5/5; 15/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=200, seed=42\n", - "[CV 5/5; 15/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=200, seed=42;, score=0.943 total time= 2.2s\n", - "[CV 3/5; 19/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=100, seed=42\n", - "[CV 3/5; 19/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.943 total time= 1.9s\n", - "[CV 1/5; 21/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=10, seed=42\n", - "[CV 1/5; 21/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=10, seed=42;, score=0.886 total time= 0.3s\n", - "[CV 2/5; 21/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=10, seed=42\n", - "[CV 2/5; 21/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=10, seed=42;, score=0.886 total time= 0.2s\n", + "[CV 5/5; 37/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=25, seed=42;, score=0.943 total time= 0.5s\n", + "[CV 2/5; 39/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=100, seed=42\n", + "[CV 2/5; 39/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=100, seed=42;, score=0.909 total time= 1.1s\n", + "[CV 5/5; 40/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=200, seed=42\n", + "[CV 5/5; 40/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=200, seed=42;, score=0.943 total time= 1.6s\n", + "[CV 4/5; 44/135] START learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=100, seed=42\n", + "[CV 4/5; 44/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=100, seed=42;, score=0.943 total time= 0.9s\n", + "[CV 1/5; 46/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=10, seed=42\n", + "[CV 1/5; 46/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.898 total time= 0.2s\n", + "[CV 4/5; 46/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=10, seed=42\n", + "[CV 4/5; 46/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.908 total time= 0.2s\n", + "[CV 2/5; 47/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42\n", + "[CV 2/5; 47/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.909 total time= 0.3s\n", + "[CV 1/5; 48/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=50, seed=42\n", + "[CV 1/5; 48/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.920 total time= 0.5s\n", + "[CV 3/5; 49/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42\n", + "[CV 3/5; 49/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.954 total time= 0.7s\n", + "[CV 1/5; 51/135] START learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=10, seed=42\n", + "[CV 1/5; 51/135] END learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=10, seed=42;, score=0.898 total time= 0.2s\n", + "[CV 4/5; 51/135] START learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=10, seed=42\n", + "[CV 4/5; 51/135] END learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=10, seed=42;, score=0.908 total time= 0.2s\n", + "[CV 2/5; 52/135] START learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=25, seed=42\n", + "[CV 2/5; 52/135] END learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=25, seed=42;, score=0.898 total time= 0.3s\n", + "[CV 3/5; 53/135] START learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=50, seed=42\n", + "[CV 3/5; 53/135] END learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.954 total time= 0.4s\n", + "[CV 1/5; 55/135] START learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=200, seed=42\n", + "[CV 1/5; 55/135] END learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=200, seed=42;, score=0.886 total time= 0.9s\n", + "[CV 4/5; 57/135] START learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=25, seed=42\n", + "[CV 4/5; 57/135] END learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=25, seed=42;, score=0.931 total time= 0.3s\n", + "[CV 5/5; 58/135] START learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=50, seed=42\n", + "[CV 5/5; 58/135] END learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=50, seed=42;, score=0.943 total time= 0.4s[CV 1/5; 2/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42\n", + "[CV 1/5; 2/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.898 total time= 0.4s\n", + "[CV 4/5; 3/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=50, seed=42\n", + "[CV 4/5; 3/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.943 total time= 0.7s\n", + "[CV 3/5; 5/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=200, seed=42\n", + "[CV 3/5; 5/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.943 total time= 1.7s\n", + "[CV 4/5; 8/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=50, seed=42\n", + "[CV 4/5; 8/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.943 total time= 0.7s\n", + "[CV 2/5; 10/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=200, seed=42\n", + "[CV 2/5; 10/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=200, seed=42;, score=0.920 total time= 1.4s\n", + "[CV 4/5; 12/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=25, seed=42\n", + "[CV 4/5; 12/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=25, seed=42;, score=0.908 total time= 0.4s\n", + "[CV 5/5; 13/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=50, seed=42\n", + "[CV 5/5; 13/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=50, seed=42;, score=0.954 total time= 0.6s\n", + "[CV 3/5; 15/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=200, seed=42\n", + "[CV 3/5; 15/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=200, seed=42;, score=0.931 total time= 1.5s\n", + "[CV 1/5; 18/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=50, seed=42\n", + "[CV 1/5; 18/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.898 total time= 0.9s\n", + "[CV 4/5; 19/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=100, seed=42\n", + "[CV 4/5; 19/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.943 total time= 1.3s\n", "[CV 3/5; 21/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=10, seed=42\n", - "[CV 3/5; 21/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=10, seed=42;, score=0.908 total time= 0.3s\n", + "[CV 3/5; 21/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=10, seed=42;, score=0.908 total time= 0.2s\n", "[CV 1/5; 22/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=25, seed=42\n", "[CV 1/5; 22/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=25, seed=42;, score=0.875 total time= 0.5s\n", "[CV 4/5; 22/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=25, seed=42\n", "[CV 4/5; 22/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=25, seed=42;, score=0.908 total time= 0.5s\n", - "[CV 5/5; 23/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=50, seed=42\n", - "[CV 5/5; 23/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.943 total time= 0.9s\n", - "[CV 3/5; 25/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=200, seed=42\n", - "[CV 3/5; 25/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=200, seed=42;, score=0.954 total time= 1.7s\n", - "[CV 4/5; 28/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=50, seed=42\n", - "[CV 4/5; 28/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=50, seed=42;, score=0.920 total time= 0.8s\n", - "[CV 2/5; 30/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=200, seed=42\n", - "[CV 2/5; 30/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=200, seed=42;, score=0.898 total time= 1.3s\n", - "[CV 5/5; 32/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=25, seed=42\n", - "[CV 5/5; 32/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.966 total time= 0.6s\n", - "[CV 2/5; 34/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=100, seed=42\n", - "[CV 2/5; 34/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.920 total time= 1.5s\n", - "[CV 5/5; 35/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=200, seed=42\n", - "[CV 5/5; 35/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.954 total time= 2.1s\n", - "[CV 2/5; 39/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=100, seed=42\n", - "[CV 2/5; 39/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=100, seed=42;, score=0.909 total time= 1.2s\n", - "[CV 5/5; 40/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=200, seed=42\n", - "[CV 5/5; 40/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=200, seed=42;, score=0.943 total time= 1.6s\n", + "[CV 1/5; 24/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=100, seed=42\n", + "[CV 1/5; 24/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=100, seed=42;, score=0.875 total time= 1.0s\n", + "[CV 4/5; 25/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=200, seed=42\n", + "[CV 4/5; 25/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=200, seed=42;, score=0.943 total time= 1.4s\n", + "[CV 2/5; 29/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=100, seed=42\n", + "[CV 2/5; 29/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=100, seed=42;, score=0.909 total time= 0.9s\n", + "[CV 5/5; 30/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=200, seed=42\n", + "[CV 5/5; 30/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=200, seed=42;, score=0.943 total time= 1.4s\n", + "[CV 3/5; 34/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=100, seed=42\n", + "[CV 3/5; 34/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.931 total time= 1.3s\n", + "[CV 1/5; 36/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=10, seed=42\n", + "[CV 1/5; 36/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=10, seed=42;, score=0.886 total time= 0.2s\n", + "[CV 2/5; 36/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=10, seed=42\n", + "[CV 2/5; 36/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=10, seed=42;, score=0.886 total time= 0.2s\n", + "[CV 4/5; 36/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=10, seed=42\n", + "[CV 4/5; 36/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=10, seed=42;, score=0.908 total time= 0.2s\n", + "[CV 2/5; 37/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=25, seed=42\n", + "[CV 2/5; 37/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=25, seed=42;, score=0.909 total time= 0.5s\n", + "[CV 2/5; 38/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=50, seed=42\n", + "[CV 2/5; 38/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.909 total time= 0.8s\n", + "[CV 5/5; 39/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=100, seed=42\n", + "[CV 5/5; 39/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=100, seed=42;, score=0.943 total time= 1.0s\n", + "[CV 3/5; 41/135] START learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=10, seed=42\n", + "[CV 3/5; 41/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=10, seed=42;, score=0.908 total time= 0.2s\n", + "[CV 1/5; 42/135] START learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=25, seed=42\n", + "[CV 1/5; 42/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=25, seed=42;, score=0.886 total time= 0.5s\n", + "[CV 1/5; 43/135] START learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=50, seed=42\n", + "[CV 1/5; 43/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=50, seed=42;, score=0.875 total time= 0.7s\n", "[CV 2/5; 44/135] START learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=100, seed=42\n", "[CV 2/5; 44/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=100, seed=42;, score=0.909 total time= 0.9s\n", "[CV 5/5; 45/135] START learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=200, seed=42\n", - "[CV 5/5; 45/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=200, seed=42;, score=0.943 total time= 1.6s\n", - "[CV 2/5; 50/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=200, seed=42\n", - "[CV 2/5; 50/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.920 total time= 1.3s\n", - "[CV 4/5; 52/135] START learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=25, seed=42\n", - "[CV 4/5; 52/135] END learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=25, seed=42;, score=0.943 total time= 0.3s\n", - "[CV 1/5; 54/135] START learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=100, seed=42\n", - "[CV 1/5; 54/135] END learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=100, seed=42;, score=0.875 total time= 0.7s\n", - "[CV 4/5; 55/135] START learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=200, seed=42\n", - "[CV 4/5; 55/135] END learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=200, seed=42;, score=0.943 total time= 1.1s\n", - "[CV 2/5; 59/135] START learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=100, seed=42\n", - "[CV 2/5; 59/135] END learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=100, seed=42;, score=0.920 total time= 0.7s\n", - "[CV 5/5; 60/135] START learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=200, seed=42\n", - "[CV 5/5; 60/135] END learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=200, seed=42;, score=0.931 total time= 1.1s[CV 2/5; 2/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42\n", - "[CV 2/5; 2/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.909 total time= 1.0s\n", - "[CV 2/5; 4/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42\n", - "[CV 2/5; 4/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.920 total time= 1.7s\n", - "[CV 4/5; 5/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=200, seed=42\n", - "[CV 4/5; 5/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.931 total time= 2.4s\n", - "[CV 2/5; 9/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=100, seed=42\n", - "[CV 2/5; 9/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=100, seed=42;, score=0.898 total time= 1.4s\n", - "[CV 5/5; 10/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=200, seed=42\n", - "[CV 5/5; 10/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=200, seed=42;, score=0.943 total time= 2.4s\n", - "[CV 1/5; 15/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=200, seed=42\n", - "[CV 1/5; 15/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=200, seed=42;, score=0.864 total time= 2.2s\n", - "[CV 4/5; 17/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=25, seed=42\n", - "[CV 4/5; 17/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.908 total time= 0.9s\n", + "[CV 5/5; 45/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=200, seed=42;, score=0.943 total time= 1.2s\n", + "[CV 5/5; 49/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42\n", + "[CV 5/5; 49/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.954 total time= 0.7s\n", + "[CV 3/5; 51/135] START learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=10, seed=42\n", + "[CV 3/5; 51/135] END learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=10, seed=42;, score=0.931 total time= 0.2s\n", + "[CV 1/5; 52/135] START learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=25, seed=42\n", + "[CV 1/5; 52/135] END learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=25, seed=42;, score=0.886 total time= 0.3s\n", + "[CV 1/5; 53/135] START learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=50, seed=42\n", + "[CV 1/5; 53/135] END learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.875 total time= 0.4s\n", + "[CV 3/5; 54/135] START learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=100, seed=42\n", + "[CV 3/5; 54/135] END learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=100, seed=42;, score=0.954 total time= 0.7s\n", + "[CV 3/5; 56/135] START learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=10, seed=42\n", + "[CV 3/5; 56/135] END learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=10, seed=42;, score=0.920 total time= 0.1s[CV 2/5; 1/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=10, seed=42\n", + "[CV 2/5; 1/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.898 total time= 0.2s\n", + "[CV 2/5; 3/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=50, seed=42\n", + "[CV 2/5; 3/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.920 total time= 0.7s\n", + "[CV 5/5; 4/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42\n", + "[CV 5/5; 4/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.954 total time= 1.1s\n", + "[CV 4/5; 6/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=10, seed=42\n", + "[CV 4/5; 6/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=10, seed=42;, score=0.885 total time= 0.2s\n", + "[CV 2/5; 7/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=25, seed=42\n", + "[CV 2/5; 7/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=25, seed=42;, score=0.886 total time= 0.4s\n", + "[CV 1/5; 8/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=50, seed=42\n", + "[CV 1/5; 8/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.875 total time= 0.7s\n", + "[CV 3/5; 9/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=100, seed=42\n", + "[CV 3/5; 9/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=100, seed=42;, score=0.943 total time= 1.1s\n", + "[CV 1/5; 11/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=10, seed=42\n", + "[CV 1/5; 11/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=10, seed=42;, score=0.886 total time= 0.2s\n", + "[CV 4/5; 11/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=10, seed=42\n", + "[CV 4/5; 11/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=10, seed=42;, score=0.874 total time= 0.2s\n", + "[CV 2/5; 12/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=25, seed=42\n", + "[CV 2/5; 12/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=25, seed=42;, score=0.886 total time= 0.4s\n", + "[CV 2/5; 13/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=50, seed=42\n", + "[CV 2/5; 13/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=50, seed=42;, score=0.909 total time= 0.6s\n", + "[CV 4/5; 14/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=100, seed=42\n", + "[CV 4/5; 14/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=100, seed=42;, score=0.954 total time= 0.8s\n", + "[CV 2/5; 16/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=10, seed=42\n", + "[CV 2/5; 16/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.898 total time= 0.2s\n", + "[CV 5/5; 16/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=10, seed=42\n", + "[CV 5/5; 16/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.885 total time= 0.5s\n", + "[CV 3/5; 17/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=25, seed=42\n", + "[CV 3/5; 17/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.931 total time= 0.6s\n", "[CV 5/5; 18/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=50, seed=42\n", - "[CV 5/5; 18/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.943 total time= 1.5s\n", + "[CV 5/5; 18/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.943 total time= 0.9s\n", "[CV 3/5; 20/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=200, seed=42\n", - "[CV 3/5; 20/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.943 total time= 2.2s\n", - "[CV 3/5; 23/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=50, seed=42\n", - "[CV 3/5; 23/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.931 total time= 0.9s\n", - "[CV 1/5; 25/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=200, seed=42\n", - "[CV 1/5; 25/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=200, seed=42;, score=0.875 total time= 1.6s\n", + "[CV 3/5; 20/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.943 total time= 1.8s\n", + "[CV 4/5; 23/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=50, seed=42\n", + "[CV 4/5; 23/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.931 total time= 0.8s\n", + "[CV 2/5; 25/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=200, seed=42\n", + "[CV 2/5; 25/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=200, seed=42;, score=0.920 total time= 1.4s\n", "[CV 4/5; 27/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=25, seed=42\n", - "[CV 4/5; 27/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=25, seed=42;, score=0.908 total time= 0.5s\n", + "[CV 4/5; 27/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=25, seed=42;, score=0.908 total time= 0.4s\n", "[CV 5/5; 28/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=50, seed=42\n", - "[CV 5/5; 28/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=50, seed=42;, score=0.943 total time= 0.8s\n", + "[CV 5/5; 28/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=50, seed=42;, score=0.943 total time= 0.7s\n", "[CV 3/5; 30/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=200, seed=42\n", - "[CV 3/5; 30/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=200, seed=42;, score=0.931 total time= 1.4s\n", + "[CV 3/5; 30/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=200, seed=42;, score=0.931 total time= 1.3s\n", "[CV 1/5; 33/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=50, seed=42\n", - "[CV 1/5; 33/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.909 total time= 1.0s\n", + "[CV 1/5; 33/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.909 total time= 0.9s\n", "[CV 4/5; 34/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=100, seed=42\n", - "[CV 4/5; 34/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.931 total time= 1.5s\n", - "[CV 4/5; 36/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=10, seed=42\n", - "[CV 4/5; 36/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=10, seed=42;, score=0.908 total time= 0.2s\n", - "[CV 2/5; 37/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=25, seed=42\n", - "[CV 2/5; 37/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=25, seed=42;, score=0.909 total time= 0.6s\n", - "[CV 2/5; 38/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=50, seed=42\n", - "[CV 2/5; 38/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.909 total time= 1.0s\n", - "[CV 5/5; 39/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=100, seed=42\n", - "[CV 5/5; 39/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=100, seed=42;, score=0.943 total time= 1.2s\n", + "[CV 4/5; 34/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.931 total time= 1.3s\n", + "[CV 3/5; 36/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=10, seed=42\n", + "[CV 3/5; 36/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=10, seed=42;, score=0.908 total time= 0.2s\n", + "[CV 1/5; 37/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=25, seed=42\n", + "[CV 1/5; 37/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=25, seed=42;, score=0.875 total time= 0.5s\n", + "[CV 1/5; 38/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=50, seed=42\n", + "[CV 1/5; 38/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.886 total time= 0.7s\n", + "[CV 4/5; 39/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=100, seed=42\n", + "[CV 4/5; 39/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=100, seed=42;, score=0.931 total time= 1.1s\n", "[CV 4/5; 41/135] START learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=10, seed=42\n", "[CV 4/5; 41/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=10, seed=42;, score=0.862 total time= 0.2s\n", "[CV 2/5; 42/135] START learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=25, seed=42\n", - "[CV 2/5; 42/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=25, seed=42;, score=0.909 total time= 0.4s\n", + "[CV 2/5; 42/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=25, seed=42;, score=0.909 total time= 0.5s\n", "[CV 2/5; 43/135] START learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=50, seed=42\n", "[CV 2/5; 43/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=50, seed=42;, score=0.909 total time= 0.7s\n", "[CV 5/5; 44/135] START learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=100, seed=42\n", - "[CV 5/5; 44/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=100, seed=42;, score=0.943 total time= 1.0s\n", + "[CV 5/5; 44/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=100, seed=42;, score=0.943 total time= 0.9s\n", + "[CV 3/5; 46/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=10, seed=42\n", + "[CV 3/5; 46/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.943 total time= 0.2s\n", + "[CV 1/5; 47/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42\n", + "[CV 1/5; 47/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.920 total time= 0.3s\n", + "[CV 5/5; 47/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42\n", + "[CV 5/5; 47/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.954 total time= 0.3s[CV 4/5; 1/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=10, seed=42\n", + "[CV 4/5; 1/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.908 total time= 0.2s\n", + "[CV 3/5; 3/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=50, seed=42\n", + "[CV 3/5; 3/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.931 total time= 0.7s\n", + "[CV 1/5; 5/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=200, seed=42\n", + "[CV 1/5; 5/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.909 total time= 1.6s\n", + "[CV 4/5; 7/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=25, seed=42\n", + "[CV 4/5; 7/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=25, seed=42;, score=0.908 total time= 0.5s\n", + "[CV 5/5; 8/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=50, seed=42\n", + "[CV 5/5; 8/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.943 total time= 0.7s\n", + "[CV 3/5; 10/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=200, seed=42\n", + "[CV 3/5; 10/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=200, seed=42;, score=0.954 total time= 1.5s\n", + "[CV 4/5; 13/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=50, seed=42\n", + "[CV 4/5; 13/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=50, seed=42;, score=0.954 total time= 0.6s\n", + "[CV 2/5; 15/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=200, seed=42\n", + "[CV 2/5; 15/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=200, seed=42;, score=0.909 total time= 1.5s\n", + "[CV 4/5; 17/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=25, seed=42\n", + "[CV 4/5; 17/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.908 total time= 0.5s\n", + "[CV 1/5; 19/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=100, seed=42\n", + "[CV 1/5; 19/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.920 total time= 1.2s\n", + "[CV 4/5; 20/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=200, seed=42\n", + "[CV 4/5; 20/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.943 total time= 1.9s\n", + "[CV 2/5; 24/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=100, seed=42\n", + "[CV 2/5; 24/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=100, seed=42;, score=0.909 total time= 1.0s\n", + "[CV 5/5; 25/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=200, seed=42\n", + "[CV 5/5; 25/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=200, seed=42;, score=0.943 total time= 1.4s\n", + "[CV 3/5; 29/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=100, seed=42\n", + "[CV 3/5; 29/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=100, seed=42;, score=0.920 total time= 0.9s\n", + "[CV 1/5; 31/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=10, seed=42\n", + "[CV 1/5; 31/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.886 total time= 0.2s\n", + "[CV 4/5; 31/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=10, seed=42\n", + "[CV 4/5; 31/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.897 total time= 0.2s\n", + "[CV 2/5; 32/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=25, seed=42\n", + "[CV 2/5; 32/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.909 total time= 0.6s\n", + "[CV 4/5; 33/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=50, seed=42\n", + "[CV 4/5; 33/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.931 total time= 0.9s\n", + "[CV 1/5; 35/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=200, seed=42\n", + "[CV 1/5; 35/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.909 total time= 1.8s\n", + "[CV 4/5; 37/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=25, seed=42\n", + "[CV 4/5; 37/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=25, seed=42;, score=0.920 total time= 0.5s\n", + "[CV 5/5; 38/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=50, seed=42\n", + "[CV 5/5; 38/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.943 total time= 0.8s\n", + "[CV 3/5; 40/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=200, seed=42\n", + "[CV 3/5; 40/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=200, seed=42;, score=0.954 total time= 1.6s\n", + "[CV 5/5; 43/135] START learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=50, seed=42\n", + "[CV 5/5; 43/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=50, seed=42;, score=0.943 total time= 0.7s\n", + "[CV 3/5; 45/135] START learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=200, seed=42\n", + "[CV 3/5; 45/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=200, seed=42;, score=0.943 total time= 1.3s\n", + "[CV 3/5; 48/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=50, seed=42\n", + "[CV 3/5; 48/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.954 total time= 0.5s\n", + "[CV 1/5; 50/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=200, seed=42\n", + "[CV 1/5; 50/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.909 total time= 1.0s\n", + "[CV 4/5; 52/135] START learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=25, seed=42\n", + "[CV 4/5; 52/135] END learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=25, seed=42;, score=0.943 total time= 0.3s\n", + "[CV 5/5; 53/135] START learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=50, seed=42\n", + "[CV 5/5; 53/135] END learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.943 total time= 0.4s\n", + "[CV 3/5; 55/135] START learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=200, seed=42\n", + "[CV 3/5; 55/135] END learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=200, seed=42;, score=0.966 total time= 1.0s\n", + "[CV 2/5; 58/135] START learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=50, seed=42\n", + "[CV 2/5; 58/135] END learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=50, seed=42;, score=0.909 total time= 0.3s\n", + "[CV 5/5; 59/135] START learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=100, seed=42\n", + "[CV 5/5; 59/135] END learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=100, seed=42;, score=0.931 total time= 0.5s\n", + "[CV 3/5; 61/135] START learning_rate=0.3, max_depth=5, min_child_weight=1.0, n_estimators=10, seed=42\n", + "[CV 3/5; 61/135] END learning_rate=0.3, max_depth=5, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.931 total time= 0.2s\n", + "[CV 1/5; 62/135] START learning_rate=0.3, max_depth=5, min_child_weight=1.0, n_estimators=25, seed=42\n", + "[CV 1/5; 62/135] END learning_rate=0.3, max_depth=5, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.898 total time= 0.4s\n", + "[CV 2/5; 63/135] START learning_rate=0.3, max_depth=5, min_child_weight=1.0, n_estimators=50, seed=42\n", + "[CV 2/5; 63/135] END learning_rate=0.3, max_depth=5, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.920 total time= 0.5s\n", + "[CV 5/5; 64/135] START learning_rate=0.3, max_depth=5, min_child_weight=1.0, n_estimators=100, seed=42\n", + "[CV 5/5; 64/135] END learning_rate=0.3, max_depth=5, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.954 total time= 0.7s[CV 2/5; 2/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42\n", + "[CV 2/5; 2/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.909 total time= 0.4s\n", + "[CV 5/5; 3/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=50, seed=42\n", + "[CV 5/5; 3/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.966 total time= 0.7s\n", + "[CV 2/5; 5/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=200, seed=42\n", + "[CV 2/5; 5/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.932 total time= 1.6s\n", + "[CV 3/5; 8/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=50, seed=42\n", + "[CV 3/5; 8/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.966 total time= 0.7s\n", + "[CV 1/5; 10/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=200, seed=42\n", + "[CV 1/5; 10/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=200, seed=42;, score=0.875 total time= 1.5s\n", + "[CV 5/5; 12/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=25, seed=42\n", + "[CV 5/5; 12/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=25, seed=42;, score=0.954 total time= 0.4s\n", + "[CV 1/5; 14/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=100, seed=42\n", + "[CV 1/5; 14/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=100, seed=42;, score=0.864 total time= 0.8s\n", + "[CV 4/5; 15/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=200, seed=42\n", + "[CV 4/5; 15/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=200, seed=42;, score=0.954 total time= 1.5s\n", + "[CV 3/5; 18/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=50, seed=42\n", + "[CV 3/5; 18/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.931 total time= 0.9s\n", + "[CV 1/5; 20/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=200, seed=42\n", + "[CV 1/5; 20/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.920 total time= 1.8s\n", + "[CV 5/5; 22/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=25, seed=42\n", + "[CV 5/5; 22/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=25, seed=42;, score=0.943 total time= 0.5s\n", + "[CV 5/5; 23/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=50, seed=42\n", + "[CV 5/5; 23/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.943 total time= 0.8s\n", + "[CV 3/5; 25/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=200, seed=42\n", + "[CV 3/5; 25/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=200, seed=42;, score=0.954 total time= 1.4s\n", + "[CV 4/5; 28/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=50, seed=42\n", + "[CV 4/5; 28/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=50, seed=42;, score=0.920 total time= 0.7s\n", + "[CV 2/5; 30/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=200, seed=42\n", + "[CV 2/5; 30/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=200, seed=42;, score=0.898 total time= 1.2s\n", + "[CV 5/5; 32/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=25, seed=42\n", + "[CV 5/5; 32/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.966 total time= 0.5s\n", + "[CV 2/5; 34/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=100, seed=42\n", + "[CV 2/5; 34/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.920 total time= 1.3s\n", + "[CV 5/5; 35/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=200, seed=42\n", + "[CV 5/5; 35/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.954 total time= 1.7s\n", + "[CV 1/5; 39/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=100, seed=42\n", + "[CV 1/5; 39/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=100, seed=42;, score=0.875 total time= 1.1s\n", + "[CV 4/5; 40/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=200, seed=42\n", + "[CV 4/5; 40/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=200, seed=42;, score=0.943 total time= 1.6s\n", + "[CV 3/5; 44/135] START learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=100, seed=42\n", + "[CV 3/5; 44/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=100, seed=42;, score=0.943 total time= 1.0s\n", "[CV 2/5; 46/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=10, seed=42\n", "[CV 2/5; 46/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.920 total time= 0.2s\n", "[CV 5/5; 46/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=10, seed=42\n", "[CV 5/5; 46/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.943 total time= 0.2s\n", "[CV 3/5; 47/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42\n", - "[CV 3/5; 47/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.954 total time= 0.6s\n", - "[CV 4/5; 48/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=50, seed=42\n", - "[CV 4/5; 48/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.931 total time= 0.5s\n", - "[CV 1/5; 50/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=200, seed=42\n", - "[CV 1/5; 50/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.909 total time= 1.3s\n", - "[CV 5/5; 52/135] START learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=25, seed=42\n", - "[CV 5/5; 52/135] END learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=25, seed=42;, score=0.943 total time= 0.3s\n", - "[CV 5/5; 53/135] START learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=50, seed=42\n", - "[CV 5/5; 53/135] END learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.943 total time= 0.5s\n", - "[CV 3/5; 55/135] START learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=200, seed=42\n", - "[CV 3/5; 55/135] END learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=200, seed=42;, score=0.966 total time= 1.1s\n", - "[CV 4/5; 58/135] START learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=50, seed=42\n", - "[CV 4/5; 58/135] END learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=50, seed=42;, score=0.943 total time= 0.5s\n", - "[CV 2/5; 60/135] START learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=200, seed=42\n", - "[CV 2/5; 60/135] END learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=200, seed=42;, score=0.920 total time= 1.1s\n", - "[CV 4/5; 62/135] START learning_rate=0.3, max_depth=5, min_child_weight=1.0, n_estimators=25, seed=42\n", - "[CV 4/5; 62/135] END learning_rate=0.3, max_depth=5, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.931 total time= 0.5s" + "[CV 3/5; 47/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.954 total time= 0.3s\n", + "[CV 2/5; 48/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=50, seed=42\n", + "[CV 2/5; 48/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.920 total time= 0.5s\n", + "[CV 4/5; 49/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42\n", + "[CV 4/5; 49/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.931 total time= 0.7s\n", + "[CV 2/5; 51/135] START learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=10, seed=42\n", + "[CV 2/5; 51/135] END learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=10, seed=42;, score=0.898 total time= 0.2s\n", + "[CV 5/5; 51/135] START learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=10, seed=42\n", + "[CV 5/5; 51/135] END learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=10, seed=42;, score=0.943 total time= 0.2s\n", + "[CV 3/5; 52/135] START learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=25, seed=42\n", + "[CV 3/5; 52/135] END learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=25, seed=42;, score=0.943 total time= 0.3s\n", + "[CV 4/5; 53/135] START learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=50, seed=42\n", + "[CV 4/5; 53/135] END learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.943 total time= 0.4s\n", + "[CV 2/5; 55/135] START learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=200, seed=42\n", + "[CV 2/5; 55/135] END learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=200, seed=42;, score=0.920 total time= 0.9s\n", + "[CV 1/5; 58/135] START learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=50, seed=42\n", + "[CV 1/5; 58/135] END learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=50, seed=42;, score=0.875 total time= 0.4s\n", + "[CV 3/5; 59/135] START learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=100, seed=42\n", + "[CV 3/5; 59/135] END learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=100, seed=42;, score=0.943 total time= 0.5s\n", + "[CV 1/5; 61/135] START learning_rate=0.3, max_depth=5, min_child_weight=1.0, n_estimators=10, seed=42\n", + "[CV 1/5; 61/135] END learning_rate=0.3, max_depth=5, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.886 total time= 0.2s\n", + "[CV 4/5; 61/135] START learning_rate=0.3, max_depth=5, min_child_weight=1.0, n_estimators=10, seed=42\n", + "[CV 4/5; 61/135] END learning_rate=0.3, max_depth=5, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.920 total time= 0.2s[CV 3/5; 1/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=10, seed=42\n", + "[CV 3/5; 1/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.908 total time= 0.2s\n", + "[CV 1/5; 3/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=50, seed=42\n", + "[CV 1/5; 3/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.909 total time= 0.7s\n", + "[CV 4/5; 4/135] START learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42\n", + "[CV 4/5; 4/135] END learning_rate=0.1, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.931 total time= 1.1s\n", + "[CV 3/5; 6/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=10, seed=42\n", + "[CV 3/5; 6/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=10, seed=42;, score=0.908 total time= 0.2s\n", + "[CV 1/5; 7/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=25, seed=42\n", + "[CV 1/5; 7/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=25, seed=42;, score=0.886 total time= 0.4s\n", + "[CV 5/5; 7/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=25, seed=42\n", + "[CV 5/5; 7/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=25, seed=42;, score=0.943 total time= 0.4s\n", + "[CV 1/5; 9/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=100, seed=42\n", + "[CV 1/5; 9/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=100, seed=42;, score=0.875 total time= 1.0s\n", + "[CV 4/5; 10/135] START learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=200, seed=42\n", + "[CV 4/5; 10/135] END learning_rate=0.1, max_depth=3, min_child_weight=2.5, n_estimators=200, seed=42;, score=0.943 total time= 1.5s\n", + "[CV 2/5; 14/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=100, seed=42\n", + "[CV 2/5; 14/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=100, seed=42;, score=0.909 total time= 0.8s\n", + "[CV 5/5; 15/135] START learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=200, seed=42\n", + "[CV 5/5; 15/135] END learning_rate=0.1, max_depth=3, min_child_weight=5.0, n_estimators=200, seed=42;, score=0.943 total time= 1.5s\n", + "[CV 2/5; 19/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=100, seed=42\n", + "[CV 2/5; 19/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.920 total time= 1.2s\n", + "[CV 5/5; 20/135] START learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=200, seed=42\n", + "[CV 5/5; 20/135] END learning_rate=0.1, max_depth=5, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.954 total time= 2.0s\n", + "[CV 3/5; 24/135] START learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=100, seed=42\n", + "[CV 3/5; 24/135] END learning_rate=0.1, max_depth=5, min_child_weight=2.5, n_estimators=100, seed=42;, score=0.954 total time= 1.1s\n", + "[CV 1/5; 26/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=10, seed=42\n", + "[CV 1/5; 26/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=10, seed=42;, score=0.875 total time= 0.2s\n", + "[CV 4/5; 26/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=10, seed=42\n", + "[CV 4/5; 26/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=10, seed=42;, score=0.862 total time= 0.2s\n", + "[CV 2/5; 27/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=25, seed=42\n", + "[CV 2/5; 27/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=25, seed=42;, score=0.920 total time= 0.4s\n", + "[CV 2/5; 28/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=50, seed=42\n", + "[CV 2/5; 28/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=50, seed=42;, score=0.909 total time= 0.6s\n", + "[CV 5/5; 29/135] START learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=100, seed=42\n", + "[CV 5/5; 29/135] END learning_rate=0.1, max_depth=5, min_child_weight=5.0, n_estimators=100, seed=42;, score=0.943 total time= 0.9s\n", + "[CV 3/5; 31/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=10, seed=42\n", + "[CV 3/5; 31/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=10, seed=42;, score=0.920 total time= 0.2s\n", + "[CV 1/5; 32/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=25, seed=42\n", + "[CV 1/5; 32/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=25, seed=42;, score=0.898 total time= 0.6s\n", + "[CV 2/5; 33/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=50, seed=42\n", + "[CV 2/5; 33/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=50, seed=42;, score=0.920 total time= 0.9s\n", + "[CV 5/5; 34/135] START learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=100, seed=42\n", + "[CV 5/5; 34/135] END learning_rate=0.1, max_depth=10, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.954 total time= 1.3s\n", + "[CV 5/5; 36/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=10, seed=42\n", + "[CV 5/5; 36/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=10, seed=42;, score=0.931 total time= 0.2s\n", + "[CV 3/5; 37/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=25, seed=42\n", + "[CV 3/5; 37/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=25, seed=42;, score=0.920 total time= 0.5s\n", + "[CV 4/5; 38/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=50, seed=42\n", + "[CV 4/5; 38/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=50, seed=42;, score=0.943 total time= 0.8s\n", + "[CV 2/5; 40/135] START learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=200, seed=42\n", + "[CV 2/5; 40/135] END learning_rate=0.1, max_depth=10, min_child_weight=2.5, n_estimators=200, seed=42;, score=0.920 total time= 1.5s\n", + "[CV 5/5; 42/135] START learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=25, seed=42\n", + "[CV 5/5; 42/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=25, seed=42;, score=0.931 total time= 0.5s\n", + "[CV 1/5; 44/135] START learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=100, seed=42\n", + "[CV 1/5; 44/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=100, seed=42;, score=0.875 total time= 0.9s\n", + "[CV 4/5; 45/135] START learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=200, seed=42\n", + "[CV 4/5; 45/135] END learning_rate=0.1, max_depth=10, min_child_weight=5.0, n_estimators=200, seed=42;, score=0.954 total time= 1.3s\n", + "[CV 2/5; 49/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42\n", + "[CV 2/5; 49/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=100, seed=42;, score=0.920 total time= 0.7s\n", + "[CV 5/5; 50/135] START learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=200, seed=42\n", + "[CV 5/5; 50/135] END learning_rate=0.3, max_depth=3, min_child_weight=1.0, n_estimators=200, seed=42;, score=0.954 total time= 1.1s\n", + "[CV 4/5; 54/135] START learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=100, seed=42\n", + "[CV 4/5; 54/135] END learning_rate=0.3, max_depth=3, min_child_weight=2.5, n_estimators=100, seed=42;, score=0.943 total time= 0.6s\n", + "[CV 1/5; 56/135] START learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=10, seed=42\n", + "[CV 1/5; 56/135] END learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=10, seed=42;, score=0.864 total time= 0.1s\n", + "[CV 4/5; 56/135] START learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=10, seed=42\n", + "[CV 4/5; 56/135] END learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=10, seed=42;, score=0.897 total time= 0.2s\n", + "[CV 2/5; 57/135] START learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=25, seed=42\n", + "[CV 2/5; 57/135] END learning_rate=0.3, max_depth=3, min_child_weight=5.0, n_estimators=25, seed=42;, score=0.898 total time= 0.3s" ] } ], @@ -773,7 +773,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 12, "id": "a19bc578-e924-42a7-8001-fa9beabb02b0", "metadata": {}, "outputs": [ @@ -795,10 +795,18 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 13, "id": "24f47f5d-3065-4b95-b65a-35d5aa4c528d", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Pass `objective` as keyword args.\n" + ] + } + ], "source": [ "import shap\n", "import xgboost as xgb\n", @@ -810,10 +818,17 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 15, "id": "ea03a5fd-7e58-48c0-ad10-0d98327fc29e", "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "ntree_limit is deprecated, use `iteration_range` or model slicing instead.\n" + ] + }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAOsCAYAAADX7yC0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD1QklEQVR4nOz9fVxV553v/7834W4XLcqNgXIjRJvxJsYmsxkFEuqp+DDurTMlZbYG23EQQxg9tsPgcZwbPNY2cWobVBhQ0MJkgmDQ3wPFqDmODceTSkwAp4qJJI5jM1FhVBIQFTSQ/fsjX3bd2WCABWKS1/Px2I/odV3rWp+1889+e61rLZPD4XAIAAAAAAzwGOkCAAAAAHz5ESwAAAAAGEawAAAAAGAYwQIAAACAYQQLAAAAAIYRLAAAAAAYRrAAAAAAYBjBAgAAAIBhBAsAAAAAhhEsvoKKior0ySefjHQZAAAA+BohWAAAAAAwjGABAAAAwDCCBQAAAADDCBYAAAAADCNYAAAAADCMYAEAAADAMIIFAAAAAMMIFgAAAAAMI1gAAAAAMIxgAQAAAMAwggUAAAAAwwgWAAAAAAwjWAAAAAAwjGABAAAAwDCCBQAAAADDCBYAAAAADCNYAAAAADCMYAEAAADAMIIFAAAAAMMIFgAAAAAMI1gAAAAAMIxgAQAAAMAwggUAAAAAwwgWAAAAAAwjWAAAAAAwjGABAAAAwDCTw+FwjHQRGFqPBT7Rr3HjsqqH5HynlxwZknkGYmPIC/f8nAAAAANhf73b0PHrrG9Lkp7/pGsoyhl2rFgAAAAAMIxgAQAAAMAwggUAAAAAwwgWAAAAAAwjWAAAAAAwjGABAAAAwDCCBQAAAADDCBYAAAAADPMcyOC6ujplZGT02V9SUqJp06YZLqovZWVlGj16tBYsWDBs5xgKjY2Neu2111RbW6tLly5JkiIiIrRgwQIlJSXJ09P1az9+/Lhef/11NTY26j/+4z90+/Ztbdu2TRaLZSTKBwAAAAZsQMGix9y5cxUfH+/WHhERYbiguykvL1doaOh9Hyxeeuklvf3225o1a5aSkpLU3d2t3/72t/rFL36ho0ePKi8vTyaTyTn+tdde02uvvaYJEyYoKipK77///ghWDwAAAAzcoILFpEmTZLVah7qWEdXV1aXu7m75+PgYnmvhwoVat26dy1wLFy5Udna2Dh06pN/+9rd68sknnX3Lly/X3//938vb21svv/wywQIAAABfOsO2x+Lw4cNKS0tTQkKC4uPjtWTJEh05cqTXcZmZmbLZbIqNjdXs2bOVlZWls2fPuoyzWCxqamrSiRMnZLFYnJ+eW40sFovWrVvnNv/+/ftlsVhUV1fnbCssLJTFYtG5c+eUk5Mjq9WquLg4NTQ0SJJu376t4uJi2e12xcXFadasWcrMzFRjY2O/rv073/lOrwFlzpw5kqRz5865tI8bN07e3t79mhsAAAC4Hw1qxaKzs1Otra0ubV5eXvLz85MkFRQUqLi4WHFxccrIyJCHh4eqq6u1Zs0arV69Wna73XlcRUWF/P39lZSUpKCgIF24cEGVlZVKS0tTaWmpIiMjJUnr169XTk6OxowZo6VLlzqPHzt27GAuQZKUnZ0tHx8fLV68WCaTSUFBQerq6tLKlSt16tQpWa1W2e12Xb9+3VnT9u3bNWXKlEGd7/Lly5KkgICAQdcMAAAA3I8GFSwKCwtVWFjo0jZnzhxt2LBBjY2NKi4uVmpqqlasWOHsX7RokbKyspSfny+bzeYMIXl5eTKbzS5z2Ww2paSkqKysTGvWrJEkWa1Wbd26VQEBAUN2G9aoUaNUUFDgspl6586dqq+vV15enmJjY53tycnJWrhwoTZv3qyioqIBn+vmzZt6+eWXNWrUKH33u98dkvoBAACA+8WggkVSUpISExNd2gIDAyVJhw4dkslkks1mc1vVSEhI0NGjR9XQ0KCZM2dKkjNUOBwO3bhxQ11dXRo7dqzGjx+v06dPD6a8fktJSXF7QtOhQ4cUFRWlyZMnu9U/Y8YMHThwQJ2dnfL19e33ebq7u5Wdna2LFy/q5z//ufz9/YeifAAAAOC+MahgERkZqRkzZvTad/78eTkcDiUnJ/d5fEtLi/PPjY2N2rZtm+rr69XR0eEyLiwsbDDl9VvPbVZ3On/+vG7duuUWnO7U2tqqkJCQfp3j008/1fr163X06FEtX75cTz311KDrBQAAAO5XgwoWX8RkMik3N1ceHr3vDZ8wYYIkqbm5Wenp6fLz81NaWpqioqLk6+srk8mkF1980S1oDEZ3d3effX2tOkycOFGZmZl9HtfffR2ffvqpfvazn+nAgQN69tlnXfaGAAAAAF8lQx4sIiIiVFNTo5CQEEVHR991bHV1tW7evKmcnBy3l8G1tbW5PSnpznc/fJ6/v7/a2trc2i9evDiA6j+r/+OPP1ZMTEyfwag/ekLF/v37lZaWpueee27QcwEAAAD3uyF/3GzPxur8/PxeVwvuvA2q54e7w+FwGVNZWekyrofZbNa1a9d6PW9kZKQaGhrU2dnpbLt27ZqqqqoGVL/NZlNLS4t27tzZa39vdX2ew+HQz3/+c+3fv1+pqan6q7/6qwHVAAAAAHzZDPmKxdSpU5Wenq6ioiKlpKQoMTFRwcHBunr1qs6cOaNjx47p+PHjkqT4+Hjl5eVp7dq1stvtGj16tE6ePKmamhqFh4e7BZNp06Zp37592rp1q6Kjo2UymZSQkCCz2Sy73a7s7GxlZGTIarWqvb1de/fuVWhoaL/CQI9nnnlGb731lrZs2aLa2lrFxMTIz89Pzc3Nqq2tlbe3t9sTsT5vy5Ytqqqq0sMPP6zo6GgdPHjQpT88PFyPPvqo8+9nz57V0aNHJUmnTp2SJB08eFC/+93vJH32RK1Ro0b1+xoAAACAe21Y9likp6drypQp2rVrl8rLy9XR0aGAgABNmDBBq1atco4LDw9Xbm6u8vPzVVJSIg8PD02fPl2FhYXauHGjmpqaXOZdvny52tratHv3brW3t8vhcKiqqkpms1nz5s3TlStXVFFRoU2bNiksLEzLli2Th4fHgJ4u5enpqc2bN2vPnj06ePCgM0QEBwdr6tSpmj9//hfO8e6770qS3n//fa1du9atf/78+S7BomcD+53uXGmxWq0ECwAAANzXTI7P34eEL73HAp/o17hxWdVDcr7TS9zfqD7cNoa8cM/PCQAAMBD21/t+iFB/rLO+LUl6/pOuoShn2A35HgsAAAAAXz8ECwAAAACGESwAAAAAGEawAAAAAGAYwQIAAACAYQQLAAAAAIbxuNmvoKKiIqWmpsrLy2ukSwEAAMDXBCsWAAAAAAwjWAAAAAAwjGABAAAAwDCCBQAAAADDCBYAAAAADCNYAAAAADCMYAEAAADAMIIFAAAAAMMIFgAAAAAMI1gAAAAAMIxgAQAAAMAwk8PhcIx0ERhajwU+MdIlAOiHcVnVI10CvgZOLzky0iWMmN+/+7ORLgHo1eVfnnRrCzt8YwQqGVqsWAAAAAAwjGABAAAAwDCCBQAAAADDCBYAAAAADCNYAAAAADCMYAEAAADAMIIFAAAAAMMIFgAAAAAM8xzI4Lq6OmVkZPTZX1JSomnTphkuqi9lZWUaPXq0FixYMGznGAo3b95UaWmpzpw5o/fee0+XL1/W448/rqKioj6P6erq0p49e7R//3598MEHeuCBBxQeHq6nn35aP/jBD+5h9QAAAMDADShY9Jg7d67i4+Pd2iMiIgwXdDfl5eUKDQ2974NFa2urioqKFBgYqEmTJqmlpeWu4z/55BP9zd/8jerq6vTUU0/pBz/4gbq7u/Vf//Vfam5uvkdVAwAAAIM3qGAxadIkWa3Woa5lRHV1dam7u1s+Pj6G5woKCtKBAwf04IMPSpKefPLJu47fsWOH3n77beXn58tisRg+PwAAAHCvDdsei8OHDystLU0JCQmKj4/XkiVLdOTIkV7HZWZmymazKTY2VrNnz1ZWVpbOnj3rMs5isaipqUknTpyQxWJxfi5duuTsX7dundv8+/fvl8ViUV1dnbOtsLBQFotF586dU05OjqxWq+Li4tTQ0CBJun37toqLi2W32xUXF6dZs2YpMzNTjY2N/bp2b29vZ6j4Ih0dHdq1a5cSEhJksVjkcDh048aNfh0LAAAA3C8GtWLR2dmp1tZWlzYvLy/5+flJkgoKClRcXKy4uDhlZGTIw8ND1dXVWrNmjVavXi273e48rqKiQv7+/kpKSlJQUJAuXLigyspKpaWlqbS0VJGRkZKk9evXKycnR2PGjNHSpUudx48dO3YwlyBJys7Olo+PjxYvXiyTyaSgoCB1dXVp5cqVOnXqlKxWq+x2u65fv+6safv27ZoyZcqgz/l5//7v/64bN25o8uTJ+tWvfqWqqirdvHlTY8aMUVJSkp577jl5eg7qfxMAAABwzwzqF2thYaEKCwtd2ubMmaMNGzaosbFRxcXFSk1N1YoVK5z9ixYtUlZWlvLz82Wz2ZwhJC8vT2az2WUum82mlJQUlZWVac2aNZIkq9WqrVu3KiAgYMhuwxo1apQKCgpcfrjv3LlT9fX1ysvLU2xsrLM9OTlZCxcu1ObNm++6CXugPvjgA0mf7R/x8vLSj3/8Y/n7++vQoUMqKSnR5cuX9dOf/nTIzgcAAAAMh0EFi6SkJCUmJrq0BQYGSpIOHTokk8kkm83mtqqRkJCgo0ePqqGhQTNnzpQkZ6jouQWoq6tLY8eO1fjx43X69OnBlNdvKSkpbqsBhw4dUlRUlCZPnuxW/4wZM3TgwAF1dnbK19d3SGroue3p2rVreuWVVxQVFSXps6D23HPP6cCBA/rLv/xLRUdHD8n5AAAAgOEwqGARGRmpGTNm9Np3/vx5ORwOJScn93n8nU9Jamxs1LZt21RfX6+Ojg6XcWFhYYMpr996brO60/nz53Xr1i234HSn1tZWhYSEDEkNPQHlkUcecYaKHjabTfX19aqvrydYAAAA4L42LDfvm0wm5ebmysOj973hEyZMkCQ1NzcrPT1dfn5+SktLU1RUlHx9fWUymfTiiy+6BY3B6O7u7rOvr1WHiRMnKjMzs8/jjOzr+Lxx48ZJ+sOKz52CgoIkfbaaAQAAANzPhjxYREREqKamRiEhIV/4r+zV1dW6efOmcnJy3B6z2tbWJm9vb5c2k8nU51z+/v5qa2tza7948eIAqv+s/o8//lgxMTF9BqOhNHXqVEnS5cuX3fp62gICAoa9DgAAAMCIIf/l3LOxOj8/v9fVgjtvg+r54e5wOFzGVFZW9vpSObPZ3Oe/3kdGRqqhoUGdnZ3OtmvXrqmqqmpA9dtsNrW0tGjnzp299n/Ry+4GKiwsTNOnT9c777zj8jjb7u5uVVZW6oEHHnDuRwEAAADuV0O+YjF16lSlp6erqKhIKSkpSkxMVHBwsK5evaozZ87o2LFjOn78uCQpPj5eeXl5Wrt2rex2u0aPHq2TJ0+qpqZG4eHhbsFk2rRp2rdvn7Zu3aro6GiZTCYlJCTIbDbLbrcrOztbGRkZslqtam9v1969exUaGjqgMPDMM8/orbfe0pYtW1RbW6uYmBj5+fmpublZtbW18vb2dnsiVm9eeeUVtbe3S/rs5XvNzc3asWOHJOnhhx9WQkKCc+z/+l//S88++6yWL1+uhQsXyt/fX//2b/+md955R88+++yQ7ecAAAAAhsuw7LFIT0/XlClTtGvXLpWXl6ujo0MBAQGaMGGCVq1a5RwXHh6u3Nxc5efnq6SkRB4eHpo+fboKCwu1ceNGNTU1ucy7fPlytbW1affu3Wpvb5fD4VBVVZXMZrPmzZunK1euqKKiQps2bVJYWJiWLVsmDw+PAT1dytPTU5s3b9aePXt08OBBZ4gIDg7W1KlTNX/+/H7NU1pa6lL/pUuXtG3bNknS/PnzXYLFpEmTVFxcrIKCApWXl+v27duKiorS//7f/1sLFizod+0AAADASDE5Pn8fEr70Hgt8YqRLANAP47KqR7oEfA2cXnJkpEsYMb9/92cjXQLQq8u/POnWFnb4xghUMrSGf3cyAAAAgK88ggUAAAAAwwgWAAAAAAwjWAAAAAAwjGABAAAAwDCCBQAAAADDCBYAAAAADOM9Fl9BRUVFSk1NlZeX10iXAgAAgK8JViwAAAAAGEawAAAAAGAYwQIAAACAYQQLAAAAAIYRLAAAAAAYRrAAAAAAYBjBAgAAAIBhBAsAAAAAhhEsAAAAABhGsAAAAABgGMECAAAAgGGeI10Aht7/72qq/Dy+J3X33j9r3ol7WxAAALgvhB2+MdIl4CuMFQsAAAAAhhEsAAAAABhGsAAAAABgGMECAAAAgGEECwAAAACGESwAAAAAGEawAAAAAGAYwQIAAACAYQN6QV5dXZ0yMjL67C8pKdG0adMMF9WXsrIyjR49WgsWLBi2cwyFhoYGvfzyy3r//ff10UcfSZJCQkKUmJiolJQUjRo1yu2YY8eOqbS0VP/5n/+pGzduaNy4cUpISNCPfvQjBQYG3utLAAAAAAZkUG/enjt3ruLj493aIyIiDBd0N+Xl5QoNDb3vg8UHH3ygzs5OzZs3T0FBQXI4HHrnnXdUXFys3/zmN3rppZfk6+vrHF9ZWannn39ekydP1l/8xV/IbDbr3XffVXl5uaqrq7Vr1y6ZzeYRvCIAAADg7gYVLCZNmiSr1TrUtYyorq4udXd3y8fHx/Bc8+fP1/z5813akpOTFR0drdzcXL3xxhuaM2eOs+/ll19WUFCQduzY4Tz/008/rYCAABUXF+utt97SrFmzDNcFAAAADJdh22Nx+PBhpaWlKSEhQfHx8VqyZImOHDnS67jMzEzZbDbFxsZq9uzZysrK0tmzZ13GWSwWNTU16cSJE7JYLM7PpUuXnP3r1q1zm3///v2yWCyqq6tzthUWFspisejcuXPKycmR1WpVXFycGhoaJEm3b99WcXGx7Ha74uLiNGvWLGVmZqqxsdHQdxIaGipJunbtmkv7jRs39M1vftMt1AQHB0uSy+oGAAAAcD8a1IpFZ2enWltbXdq8vLzk5+cnSSooKFBxcbHi4uKUkZEhDw8PVVdXa82aNVq9erXsdrvzuIqKCvn7+yspKUlBQUG6cOGCKisrlZaWptLSUkVGRkqS1q9fr5ycHI0ZM0ZLly51Hj927NjBXIIkKTs7Wz4+Plq8eLFMJpOCgoLU1dWllStX6tSpU7JarbLb7bp+/bqzpu3bt2vKlCn9/p56PmfOnFFeXp68vLw0Y8YMl3GxsbF69dVXtWnTJn3/+9933gq1Y8cOPf7444qJiRn0NQIAAAD3wqCCRWFhoQoLC13a5syZow0bNqixsVHFxcVKTU3VihUrnP2LFi1SVlaW8vPzZbPZnCEkLy/Pbf+AzWZTSkqKysrKtGbNGkmS1WrV1q1bFRAQMGS3YY0aNUoFBQXy9PzD17Bz507V19crLy9PsbGxzvbk5GQtXLhQmzdvVlFRUb/m37Ztm0pLS51/f+ihh7Rp0yaFh4e7jFu1apU6Ozu1a9cu7dy509m+YMEC/cM//IMeeOCBwV4iAAAAcE8MKlgkJSUpMTHRpa3nyUWHDh2SyWSSzWZzW9VISEjQ0aNH1dDQoJkzZ0qSM1Q4HA7duHFDXV1dGjt2rMaPH6/Tp08Pprx+S0lJcQkVPfVHRUVp8uTJbvXPmDFDBw4cUGdnZ79uT3r66acVGxur9vZ2NTQ0qL6+3m1OSfL09FRISIhmzZqlJ598Ur6+vjp+/Liqqqr0wAMP6B//8R+NXCYAAAAw7AYVLCIjI91u5+lx/vx5ORwOJScn93l8S0uL88+NjY3atm2b6uvr1dHR4TIuLCxsMOX1W89tVnc6f/68bt265Rac7tTa2qqQkJB+zd9zjsTERL355ptauXKlJOmpp56SJH366adauXKluru79etf/1omk8k53t/fXy+99JLmzJnT5/cNAAAA3A8GFSy+iMlkUm5urjw8et8bPmHCBElSc3Oz0tPT5efnp7S0NEVFRcnX11cmk0kvvviiW9AYjO7u7j77+lp1mDhxojIzM/s8brD7OmJjYxUYGKg9e/Y4g8Xvfvc7/fu//7v++q//2hkqeiQmJuqll17SiRMnCBYAAAC4rw15sIiIiFBNTY1CQkIUHR1917HV1dW6efOmcnJyZLFYXPra2trk7e3t0vb5H9538vf3V1tbm1v7xYsXB1D9Z/V//PHHiomJ6TMYGXHr1i2Xp0JdvnxZUu8BqKftbuEIAAAAuB8M+S/nno3V+fn5vf4gvvM2qJ4f7g6Hw2VMZWWly7geZrPZ7VGtPSIjI9XQ0KDOzk5n27Vr11RVVTWg+m02m1paWlw2UfdVf1+uXr3aa/urr76q69ev65FHHnG2PfTQQ5Kk1157TV1dXS7j9+/fL0n9fgoVAAAAMFKGfMVi6tSpSk9PV1FRkVJSUpSYmKjg4GBdvXpVZ86c0bFjx3T8+HFJUnx8vPLy8rR27VrZ7XaNHj1aJ0+eVE1NjcLDw92CybRp07Rv3z5t3bpV0dHRMplMSkhIkNlslt1uV3Z2tjIyMmS1WtXe3q69e/cqNDS0X2GgxzPPPKO33npLW7ZsUW1trWJiYuTn56fm5mbV1tbK29vb7YlYn/eTn/xE/v7+evTRRxUSEqLr16/rd7/7nY4ePaoHH3xQ6enpzrEPP/ywvve97+n111/Xj370I82bN0++vr5688039cYbb2jatGn67ne/O4D/AwAAAMC9Nyx7LNLT0zVlyhTt2rVL5eXl6ujoUEBAgCZMmKBVq1Y5x4WHhys3N1f5+fkqKSmRh4eHpk+frsLCQm3cuFFNTU0u8y5fvlxtbW3avXu32tvb5XA4VFVVJbPZrHnz5unKlSuqqKjQpk2bFBYWpmXLlsnDw2NAT5fy9PTU5s2btWfPHh08eNAZIoKDgzV16lS3N2r3JikpSa+//rr27t2r1tZWeXp6Kjw8XEuWLNEPf/hDjRkzxmX8888/r7KyMr322msqLCzUp59+qtDQUKWmpmrp0qU8bhYAAAD3PZPj8/ch4Utv7guf6C/+9nt99s+ad+IeVgMAAO4XYYdvjHQJ+Aob+t3JAAAAAL52CBYAAAAADCNYAAAAADCMYAEAAADAMIIFAAAAAMMIFgAAAAAMG5b3WGBk/SCoRPZPX5eXl1fvAw7f23oAAADw1ceKBQAAAADDCBYAAAAADCNYAAAAADCMYAEAAADAMIIFAAAAAMMIFgAAAAAMI1gAAAAAMIxgAQAAAMAwggUAAAAAwwgWAAAAAAwjWAAAAAAwjGABAAAAwDCTw+FwjHQRGFqPBT4x0iUAANAv47KqR7oEnV5y5K79v3/3Z/ekjnXWt/X8J1335FzAcGDFAgAAAIBhBAsAAAAAhhEsAAAAABhGsAAAAABgGMECAAAAgGEECwAAAACGESwAAAAAGOY5kMF1dXXKyMjos7+kpETTpk0zXFRfysrKNHr0aC1YsGDYzjEUbt68qdLSUp05c0bvvfeeLl++rMcff1xFRUVuY7/oO5WkHTt26Dvf+c4wVQsAAAAYN6Bg0WPu3LmKj493a4+IiDBc0N2Ul5crNDT0vg8Wra2tKioqUmBgoCZNmqSWlpY+x0ZHR2v9+vVu7bdv39YLL7ygMWPG6JFHHhnOcgEAAADDBhUsJk2aJKvVOtS1jKiuri51d3fLx8fH8FxBQUE6cOCAHnzwQUnSk08+2efYwMDAXr/L1157TZ9++qlsNps8PQf1vwkAAAC4Z4Ztj8Xhw4eVlpamhIQExcfHa8mSJTpy5Eiv4zIzM2Wz2RQbG6vZs2crKytLZ8+edRlnsVjU1NSkEydOyGKxOD+XLl1y9q9bt85t/v3798tisaiurs7ZVlhYKIvFonPnziknJ0dWq1VxcXFqaGiQ9NlqQXFxsex2u+Li4jRr1ixlZmaqsbGxX9fu7e3tDBWDtW/fPknSn/3ZnxmaBwAAALgXBvVP4Z2dnWptbXVp8/Lykp+fnySpoKBAxcXFiouLU0ZGhjw8PFRdXa01a9Zo9erVstvtzuMqKirk7++vpKQkBQUF6cKFC6qsrFRaWppKS0sVGRkpSVq/fr1ycnI0ZswYLV261Hn82LFjB3MJkqTs7Gz5+Pho8eLFMplMCgoKUldXl1auXKlTp07JarXKbrfr+vXrzpq2b9+uKVOmDPqc/XHx4kXV1dXpO9/5jqKioob1XAAAAMBQGFSwKCwsVGFhoUvbnDlztGHDBjU2Nqq4uFipqalasWKFs3/RokXKyspSfn6+bDabM4Tk5eXJbDa7zGWz2ZSSkqKysjKtWbNGkmS1WrV161YFBAQM2W1Yo0aNUkFBgcutRjt37lR9fb3y8vIUGxvrbE9OTtbChQu1efPmXjdhD6Wqqio5HA59//vfH9bzAAAAAENlUMEiKSlJiYmJLm2BgYGSpEOHDslkMslms7mtaiQkJOjo0aNqaGjQzJkzJckZKhwOh27cuKGuri6NHTtW48eP1+nTpwdTXr+lpKS47V84dOiQoqKiNHnyZLf6Z8yYoQMHDqizs1O+vr7DUlN3d7deffVV+fn5uX3HAAAAwP1qUMEiMjJSM2bM6LXv/PnzcjgcSk5O7vP4O5+S1NjYqG3btqm+vl4dHR0u48LCwgZTXr/13GZ1p/Pnz+vWrVt3/VHf2tqqkJCQYanpzTff1H//93/r6aefHrbwAgAAAAy1YXnckMlkUm5urjw8et8bPmHCBElSc3Oz0tPT5efnp7S0NEVFRcnX11cmk0kvvviiW9AYjO7u7j77+vrhPnHiRGVmZvZ5nJF9HV+kZ9M2t0EBAADgy2TIg0VERIRqamoUEhKi6Ojou46trq7WzZs3lZOTI4vF4tLX1tYmb29vlzaTydTnXP7+/mpra3Nrv3jx4gCq/6z+jz/+WDExMX0Go+Hy0Ucf6Y033tDDDz887BvEAQAAgKE05L+cezZW5+fn97pacOdtUD0/3B0Oh8uYysrKXl8qZzabde3atV7PGxkZqYaGBnV2djrbrl27pqqqqgHVb7PZ1NLSop07d/baf7eX3Rl14MABdXV16U//9E+H7RwAAADAcBjyFYupU6cqPT1dRUVFSklJUWJiooKDg3X16lWdOXNGx44d0/HjxyVJ8fHxysvL09q1a2W32zV69GidPHlSNTU1Cg8Pdwsm06ZN0759+7R161ZFR0fLZDIpISFBZrNZdrtd2dnZysjIkNVqVXt7u/bu3avQ0NABhYFnnnlGb731lrZs2aLa2lrFxMTIz89Pzc3Nqq2tlbe3t9sTsXrzyiuvqL29XdJnL99rbm7Wjh07JEkPP/ywEhIS3I7Zt2+ffHx8vnIvHwQAAMBX37DssUhPT9eUKVO0a9culZeXq6OjQwEBAZowYYJWrVrlHBceHq7c3Fzl5+erpKREHh4emj59ugoLC7Vx40Y1NTW5zLt8+XK1tbVp9+7dam9vl8PhUFVVlcxms+bNm6crV66ooqJCmzZtUlhYmJYtWyYPD48BPV3K09NTmzdv1p49e3Tw4EFniAgODtbUqVM1f/78fs1TWlrqUv+lS5e0bds2SdL8+fPdgsXJkyf1+9//Xk899ZS++c1v9rteAAAA4H5gcnz+PiR86T0W+MRIlwAAQL+My6oe6RJ0esmRu/b//t2f3ZM61lnf1vOfdN2TcwHD4d7uTgYAAADwlUSwAAAAAGAYwQIAAACAYQQLAAAAAIYRLAAAAAAYRrAAAAAAYBjBAgAAAIBhvMfiK6ioqEipqany8vIa6VIAAADwNcGKBQAAAADDCBYAAAAADCNYAAAAADCMYAEAAADAMIIFAAAAAMMIFgAAAAAMI1gAAAAAMIxgAQAAAMAwggUAAAAAwwgWAAAAAAwjWAAAAAAwzORwOBwjXQSG1mOBT4x0CcCXyris6pEu4QudXnJkpEv42tgY8sJIl/CF7K93j3QJkqTLvzzZa3tB9a17XIkxz3/SNdIlAF8JrFgAAAAAMIxgAQAAAMAwggUAAAAAwwgWAAAAAAwjWAAAAAAwjGABAAAAwDCCBQAAAADDCBYAAAAADPMcyOC6ujplZGT02V9SUqJp06YZLqovZWVlGj16tBYsWDBs5xgKN2/eVGlpqc6cOaP33ntPly9f1uOPP66ioqI+j/ntb3+r4uJivf/++/L29lZMTIx+/OMfKyws7B5WDgAAAAzOgIJFj7lz5yo+Pt6tPSIiwnBBd1NeXq7Q0ND7Pli0traqqKhIgYGBmjRpklpaWu46/vXXX9ff/u3f6tvf/rZ+8pOf6Pr16yovL1daWppefvllBQcH36PKAQAAgMEZVLCYNGmSrFbrUNcyorq6utTd3S0fHx/DcwUFBenAgQN68MEHJUlPPvnkXc/7y1/+Ug8++KB27Nihb3zjG5KkuLg4/ehHP1JRUZH+4R/+wXBNAAAAwHAatj0Whw8fVlpamhISEhQfH68lS5boyJEjvY7LzMyUzWZTbGysZs+eraysLJ09e9ZlnMViUVNTk06cOCGLxeL8XLp0ydm/bt06t/n3798vi8Wiuro6Z1thYaEsFovOnTunnJwcWa1WxcXFqaGhQZJ0+/ZtFRcXy263Ky4uTrNmzVJmZqYaGxv7de3e3t7OUPFF6uvrdeXKFX3/+993hgpJ+qM/+iP98R//sQ4fPqyurq5+zQUAAACMlEGtWHR2dqq1tdWlzcvLS35+fpKkgoICFRcXKy4uThkZGfLw8FB1dbXWrFmj1atXy263O4+rqKiQv7+/kpKSFBQUpAsXLqiyslJpaWkqLS1VZGSkJGn9+vXKycnRmDFjtHTpUufxY8eOHcwlSJKys7Pl4+OjxYsXy2QyKSgoSF1dXVq5cqVOnTolq9Uqu92u69evO2vavn27pkyZMuhzft67774rSb3uTXnkkUdUW1urDz74QBMmTBiycwIAAABDbVDBorCwUIWFhS5tc+bM0YYNG9TY2Kji4mKlpqZqxYoVzv5FixYpKytL+fn5stlszhCSl5cns9nsMpfNZlNKSorKysq0Zs0aSZLVatXWrVsVEBAwZLdhjRo1SgUFBfL0/MPXsHPnTtXX1ysvL0+xsbHO9uTkZC1cuFCbN2++6ybsgbpy5Yokady4cW59PW1XrlwhWAAAAOC+NqhgkZSUpMTERJe2wMBASdKhQ4dkMplks9ncVjUSEhJ09OhRNTQ0aObMmZLkDBUOh0M3btxQV1eXxo4dq/Hjx+v06dODKa/fUlJSXEJFT/1RUVGaPHmyW/0zZszQgQMH1NnZKV9f3yGpobOzU9JnKz6f5+3t7TIGAAAAuF8NKlhERkZqxowZvfadP39eDodDycnJfR5/51OSGhsbtW3bNtXX16ujo8Nl3HA/arXnNqs7nT9/Xrdu3XILTndqbW1VSEjIkNTQE1A++eQTt77bt2+7jAEAAADuV4MKFl/EZDIpNzdXHh697w3vua2nublZ6enp8vPzU1pamqKiouTr6yuTyaQXX3zRLWgMRnd3d599ff1gnzhxojIzM/s8zsi+js/reZTs5cuXFR0d7dJ3+fJllzEAAADA/WrIg0VERIRqamoUEhLi9kP586qrq3Xz5k3l5OTIYrG49LW1tTlvBephMpn6nMvf319tbW1u7RcvXhxA9Z/V//HHHysmJqbPYDSUejaCNzQ0uK0CnT59Wn5+fho/fvyw1wEAAAAYMeS/nHs2Vufn5/e6WnDnbVA9P9wdDofLmMrKyl5fKmc2m3Xt2rVezxsZGamGhgaX/QjXrl1TVVXVgOq32WxqaWnRzp07e+3/opfdDdQf//EfKygoSHv37tXNmzed7e+//77q6+uVmJjotg8EAAAAuN8M+S/WqVOnKj09XUVFRUpJSVFiYqKCg4N19epVnTlzRseOHdPx48clSfHx8crLy9PatWtlt9s1evRonTx5UjU1NQoPD3cLJtOmTdO+ffu0detWRUdHy2QyKSEhQWazWXa7XdnZ2crIyJDValV7e7v27t2r0NDQAYWBZ555Rm+99Za2bNmi2tpaxcTEyM/PT83NzaqtrZW3t7fbE7F688orr6i9vV3SZy/Ba25u1o4dOyRJDz/8sBISEiRJnp6eWrVqlf7u7/5Oy5YtU1JSkm7cuKGysjKNHTtWzz33XL9rBwAAAEbKsPxTeHp6uqZMmaJdu3apvLxcHR0dCggI0IQJE7Rq1SrnuPDwcOXm5io/P18lJSXy8PDQ9OnTVVhYqI0bN6qpqcll3uXLl6utrU27d+9We3u7HA6HqqqqZDabNW/ePF25ckUVFRXatGmTwsLCtGzZMnl4eAzo6VKenp7avHmz9uzZo4MHDzpDRHBwsKZOnar58+f3a57S0lKX+i9duqRt27ZJkubPn+8MFpKUmJgoHx8f/frXv9bmzZvl7e2tmJgY/fjHP+71MbQAAADA/cbk+Px9SPjSeyzwiZEuAfhSGZdVPdIlfKHTS46MdAlfGxtDXhjpEr6Q/fW+H0xyL13+5cle2wuqb93jSox5/pOukS4B+EoY/t3JAAAAAL7yCBYAAAAADCNYAAAAADCMYAEAAADAMIIFAAAAAMMIFgAAAAAM43GzX0FFRUVKTU2Vl5fXSJcCAACArwlWLAAAAAAYRrAAAAAAYBjBAgAAAIBhBAsAAAAAhhEsAAAAABhGsAAAAABgGMECAAAAgGEECwAAAACGESwAAAAAGEawAAAAAGAYwQIAAACAYQQLAAAAAIaZHA6HY6SLwNB6LPCJAR8zLqt6GCoBcDevxnx3pEvo0+VfnhzpEjDEwg7fGOkSAHzFsWIBAAAAwDCCBQAAAADDCBYAAAAADCNYAAAAADCMYAEAAADAMIIFAAAAAMMIFgAAAAAM8xzI4Lq6OmVkZPTZX1JSomnTphkuqi9lZWUaPXq0FixYMGznGAo3b95UaWmpzpw5o/fee0+XL1/W448/rqKiol7Hp6en68SJE732/eu//qumTJkynOUCAAAAhg0oWPSYO3eu4uPj3dojIiIMF3Q35eXlCg0Nve+DRWtrq4qKihQYGKhJkyappaXlC48ZM2aM/uZv/satPSwsbDhKBAAAAIbUoILFpEmTZLVah7qWEdXV1aXu7m75+PgYnisoKEgHDhzQgw8+KEl68sknv/AYs9n8lftOAQAA8PUxbHssDh8+rLS0NCUkJCg+Pl5LlizRkSNHeh2XmZkpm82m2NhYzZ49W1lZWTp79qzLOIvFoqamJp04cUIWi8X5uXTpkrN/3bp1bvPv379fFotFdXV1zrbCwkJZLBadO3dOOTk5slqtiouLU0NDgyTp9u3bKi4ult1uV1xcnGbNmqXMzEw1Njb269q9vb2doWIgPv30U12/fl0Oh2PAxwIAAAAjaVArFp2dnWptbXVp8/Lykp+fnySpoKBAxcXFiouLU0ZGhjw8PFRdXa01a9Zo9erVstvtzuMqKirk7++vpKQkBQUF6cKFC6qsrFRaWppKS0sVGRkpSVq/fr1ycnI0ZswYLV261Hn82LFjB3MJkqTs7Gz5+Pho8eLFMplMCgoKUldXl1auXKlTp07JarXKbrfr+vXrzpq2b98+LHseLl++rCeffFK3bt2Sr6+vYmNjtWLFCkVFRQ35uQAAAIChNqhgUVhYqMLCQpe2OXPmaMOGDWpsbFRxcbFSU1O1YsUKZ/+iRYuUlZWl/Px82Ww2ZwjJy8uT2Wx2mctmsyklJUVlZWVas2aNJMlqtWrr1q0KCAgYsluGRo0apYKCAnl6/uFr2Llzp+rr65WXl6fY2Fhne3JyshYuXKjNmzf3uQl7sMLCwjR9+nR9+9vfloeHh9555x1VVFTo7bff1q9//WtNnDhxSM8HAAAADLVBBYukpCQlJia6tAUGBkqSDh06JJPJJJvN5raqkZCQoKNHj6qhoUEzZ86UJGeocDgcunHjhrq6ujR27FiNHz9ep0+fHkx5/ZaSkuISKnrqj4qK0uTJk93qnzFjhg4cOKDOzk75+voOWR3/+3//b5e/JyYmKiEhQc8995xycnJUUFAwZOcCAAAAhsOggkVkZKRmzJjRa9/58+flcDiUnJzc5/F3PiWpsbFR27ZtU319vTo6OlzGDfcTkXpus7rT+fPndevWLbfgdKfW1laFhIQMZ2l67LHH9Nhjj6m+vn7IgwwAAAAw1AYVLL6IyWRSbm6uPDx63xs+YcIESVJzc7PS09Pl5+entLQ0RUVFydfXVyaTSS+++KJb0BiM7u7uPvv6+rE+ceJEZWZm9nmckX0dA/Gtb31L9fX1am9vJ1gAAADgvjbkwSIiIkI1NTUKCQlRdHT0XcdWV1fr5s2bysnJkcVicelra2uTt7e3S5vJZOpzLn9/f7W1tbm1X7x4cQDVf1b/xx9/rJiYmD6D0b3yX//1X3rggQf0zW9+c0TrAAAAAL7IkP9y7tlYnZ+f3+tqwZ23QfX8cP/841UrKyt7famc2WzWtWvXej1vZGSkGhoa1NnZ6Wy7du2aqqqqBlS/zWZTS0uLdu7c2Wt/f152NxDXr1/v9Xv67W9/q5MnT2rGjBlD8m4NAAAAYDgN+YrF1KlTlZ6erqKiIqWkpCgxMVHBwcG6evWqzpw5o2PHjun48eOSpPj4eOXl5Wnt2rWy2+0aPXq0Tp48qZqaGoWHh7v94J42bZr27dunrVu3Kjo6WiaTSQkJCTKbzbLb7crOzlZGRoasVqva29u1d+9ehYaGDigMPPPMM3rrrbe0ZcsW1dbWKiYmRn5+fmpublZtba28vb3dnojVm1deeUXt7e2SPnv5XnNzs3bs2CFJevjhh5WQkCBJqqur06ZNm/Tkk08qLCxMDzzwgN555x0dOnRIY8aMUVZWVr9rBwAAAEbKsOyxSE9P15QpU7Rr1y6Vl5ero6NDAQEBmjBhglatWuUcFx4ertzcXOXn56ukpEQeHh6aPn26CgsLtXHjRjU1NbnMu3z5crW1tWn37t1qb2+Xw+FQVVWVzGaz5s2bpytXrqiiokKbNm1SWFiYli1bJg8PjwE9XcrT01ObN2/Wnj17dPDgQWeICA4O1tSpUzV//vx+zVNaWupS/6VLl7Rt2zZJ0vz5853BYvz48Zo8ebLeeOMNffTRR+rq6tK4ceP0gx/8QKmpqRo3bly/awcAAABGisnBa56/ch4LfGLAx4zLqh6GSgDczasx3x3pEvp0+ZcnR7oEDLGwwzdGugQAX3EjuzsZAAAAwFcCwQIAAACAYQQLAAAAAIYRLAAAAAAYRrAAAAAAYBjBAgAAAIBhBAsAAAAAhvEei6+goqIipaamysvLa6RLAQAAwNcEKxYAAAAADCNYAAAAADCMYAEAAADAMIIFAAAAAMMIFgAAAAAMI1gAAAAAMIxgAQAAAMAwggUAAAAAwwgWAAAAAAwjWAAAAAAwjGABAAAAwDCTw+FwjHQRGFqPBT4x0iVA0ris6n6PPb3kyDBWAtw/Noa84Pyz/fXuLxx/+Zcnh7McSVJB9a0hm+v5T7qGbC4A+LJhxQIAAACAYQQLAAAAAIYRLAAAAAAYRrAAAAAAYBjBAgAAAIBhBAsAAAAAhhEsAAAAABhGsAAAAABgmOdABtfV1SkjI6PP/pKSEk2bNs1wUX0pKyvT6NGjtWDBgmE7x1C4efOmSktLdebMGb333nu6fPmyHn/8cRUVFfU6/t/+7d9UU1OjxsZG/ed//qe6u7tVVVWlb33rW/e4cgAAAGBwBhQsesydO1fx8fFu7REREYYLupvy8nKFhobe98GitbVVRUVFCgwM1KRJk9TS0nLX8bt379Y777yjb3/72woPD9cHH3xwjyoFAAAAhsaggsWkSZNktVqHupYR1dXVpe7ubvn4+BieKygoSAcOHNCDDz4oSXryySfvOn79+vUKCgqSp6enfvGLXxAsAAAA8KUzbHssDh8+rLS0NCUkJCg+Pl5LlizRkSNHeh2XmZkpm82m2NhYzZ49W1lZWTp79qzLOIvFoqamJp04cUIWi8X5uXTpkrN/3bp1bvPv379fFotFdXV1zrbCwkJZLBadO3dOOTk5slqtiouLU0NDgyTp9u3bKi4ult1uV1xcnGbNmqXMzEw1Njb269q9vb2doaI/QkJC5Ok5qIwHAAAA3BcG9Wu2s7NTra2tLm1eXl7y8/OTJBUUFKi4uFhxcXHKyMiQh4eHqqurtWbNGq1evVp2u915XEVFhfz9/ZWUlKSgoCBduHBBlZWVSktLU2lpqSIjIyV99q/6OTk5GjNmjJYuXeo8fuzYsYO5BElSdna2fHx8tHjxYplMJgUFBamrq0srV67UqVOnZLVaZbfbdf36dWdN27dv15QpUwZ9TgAAAOCraFDBorCwUIWFhS5tc+bM0YYNG9TY2Kji4mKlpqZqxYoVzv5FixYpKytL+fn5stlszhCSl5cns9nsMpfNZlNKSorKysq0Zs0aSZLVatXWrVsVEBAwZLdhjRo1SgUFBS6rBTt37lR9fb3y8vIUGxvrbE9OTtbChQu1efPmPjdhAwAAAF9XgwoWSUlJSkxMdGkLDAyUJB06dEgmk0k2m81tVSMhIUFHjx5VQ0ODZs6cKUnOUOFwOHTjxg11dXVp7NixGj9+vE6fPj2Y8votJSXF7RakQ4cOKSoqSpMnT3arf8aMGTpw4IA6Ozvl6+s7rLUBAAAAXyaDChaRkZGaMWNGr33nz5+Xw+FQcnJyn8ff+ZSkxsZGbdu2TfX19ero6HAZFxYWNpjy+q3nNqs7nT9/Xrdu3XILTndqbW1VSEjIcJYGAAAAfKkMy45hk8mk3NxceXj0vjd8woQJkqTm5malp6fLz89PaWlpioqKkq+vr0wmk1588UW3oDEY3d3dffb1teowceJEZWZm9nmckX0dAAAAwFfRkAeLiIgI1dTUKCQkRNHR0XcdW11drZs3byonJ0cWi8Wlr62tTd7e3i5tJpOpz7n8/f3V1tbm1n7x4sUBVP9Z/R9//LFiYmL6DEYAAAAAXA35L+eejdX5+fm9rhbceRtUzw93h8PhMqaysrLXl8qZzWZdu3at1/NGRkaqoaFBnZ2dzrZr166pqqpqQPXbbDa1tLRo586dvfZ/0cvuAAAAgK+jIV+xmDp1qtLT01VUVKSUlBQlJiYqODhYV69e1ZkzZ3Ts2DEdP35ckhQfH6+8vDytXbtWdrtdo0eP1smTJ1VTU6Pw8HC3YDJt2jTt27dPW7duVXR0tEwmkxISEmQ2m2W325Wdna2MjAxZrVa1t7dr7969Cg0NHVAYeOaZZ/TWW29py5Ytqq2tVUxMjPz8/NTc3Kza2lp5e3u7PRGrN6+88ora29slffbyvebmZu3YsUOS9PDDDyshIcE59sSJEzpx4oQk6cyZM5I+ewzvqFGjJEnLli3rd/0AAADASBiWPRbp6emaMmWKdu3apfLycnV0dCggIEATJkzQqlWrnOPCw8OVm5ur/Px8lZSUyMPDQ9OnT1dhYaE2btyopqYml3mXL1+utrY27d69W+3t7XI4HKqqqpLZbNa8efN05coVVVRUaNOmTQoLC9OyZcvk4eExoKdLeXp6avPmzdqzZ48OHjzoDBHBwcGaOnWq5s+f3695SktLXeq/dOmStm3bJkmaP3++S7Cora3V9u3b3Y7vQbAAAADA/c7k+Px9SPjSeyzwiZEuAZLGZVX3e+zpJe5vpQe+ijaGvOD8s/31vh+u0ePyL08OZzmSpILqW0M21/OfdA3ZXADwZcPuZAAAAACGESwAAAAAGEawAAAAAGAYwQIAAACAYQQLAAAAAIYRLAAAAAAYxuNmv4KKioqUmpoqLy+vkS4FAAAAXxOsWAAAAAAwjGABAAAAwDCCBQAAAADDCBYAAAAADCNYAAAAADCMYAEAAADAMIIFAAAAAMMIFgAAAAAMI1gAAAAAMIxgAQAAAMAwggUAAAAAwwgWAAAAAAwzORwOx0gXgaE194VPRroE4Evt9JIjI13CfWVjyAu9tttf7x7S81z+5ckhne/zwg7fGNb5AeDrjhULAAAAAIYRLAAAAAAYRrAAAAAAYBjBAgAAAIBhBAsAAAAAhhEsAAAAABhGsAAAAABgmOdABtfV1SkjI6PP/pKSEk2bNs1wUX0pKyvT6NGjtWDBgmE7x1BoaGjQyy+/rPfff18fffSRJCkkJESJiYlKSUnRqFGj3I45ffq0CgoKdPr0aZlMJj366KP6n//zf+qP/uiP7nX5AAAAwIANKFj0mDt3ruLj493aIyIiDBd0N+Xl5QoNDb3vg8UHH3ygzs5OzZs3T0FBQXI4HHrnnXdUXFys3/zmN3rppZfk6+vrHN/Q0KDnnntOwcHBeu655yRJFRUVevbZZ1VcXKyJEyeO1KUAAAAA/TKoYDFp0iRZrdahrmVEdXV1qbu7Wz4+Pobnmj9/vubPn+/SlpycrOjoaOXm5uqNN97QnDlznH2//OUv5eXlpe3bt2vcuHGSpDlz5ujP//zPtWnTJuXn5xuuCQAAABhOw7bH4vDhw0pLS1NCQoLi4+O1ZMkSHTlypNdxmZmZstlsio2N1ezZs5WVlaWzZ8+6jLNYLGpqatKJEydksVicn0uXLjn7161b5zb//v37ZbFYVFdX52wrLCyUxWLRuXPnlJOTI6vVqri4ODU0NEiSbt++reLiYtntdsXFxWnWrFnKzMxUY2Ojoe8kNDRUknTt2jVn24cffqh3331Xs2fPdoYKSRo3bpxmz56tt99+W1evXjV0XgAAAGC4DWrForOzU62trS5tXl5e8vPzkyQVFBSouLhYcXFxysjIkIeHh6qrq7VmzRqtXr1adrvdeVxFRYX8/f2VlJSkoKAgXbhwQZWVlUpLS1NpaakiIyMlSevXr1dOTo7GjBmjpUuXOo8fO3bsYC5BkpSdnS0fHx8tXrxYJpNJQUFB6urq0sqVK3Xq1ClZrVbZ7XZdv37dWdP27ds1ZcqUfn9PPZ8zZ84oLy9PXl5emjFjhnPMO++8I0l69NFH3Y6fNm2aqqqq1NjYqCeeeGLQ1wkAAAAMt0EFi8LCQhUWFrq0zZkzRxs2bFBjY6OKi4uVmpqqFStWOPsXLVqkrKws5efny2azOUNIXl6ezGazy1w2m00pKSkqKyvTmjVrJElWq1Vbt25VQEDAkN2GNWrUKBUUFMjT8w9fw86dO1VfX6+8vDzFxsY625OTk7Vw4UJt3rxZRUVF/Zp/27ZtKi0tdf79oYce0qZNmxQeHu5s61mNCA4Odju+p+3y5csDuzAAAADgHhtUsEhKSlJiYqJLW2BgoCTp0KFDMplMstlsbqsaCQkJOnr0qBoaGjRz5kxJcoYKh8OhGzduqKurS2PHjtX48eN1+vTpwZTXbykpKS6hoqf+qKgoTZ482a3+GTNm6MCBA+rs7HTZfN2Xp59+WrGxsWpvb1dDQ4Pq6+vd5uzs7JQkeXt7ux3fs9+jZwwAAABwvxpUsIiMjHS5nedO58+fl8PhUHJycp/Ht7S0OP/c2Niobdu2qb6+Xh0dHS7jwsLCBlNev/XcZnWn8+fP69atW27B6U6tra0KCQnp1/w950hMTNSbb76plStXSpKeeuopSXIGlNu3b7sdf+vWLZcxAAAAwP1qUMHii5hMJuXm5srDo/e94RMmTJAkNTc3Kz09XX5+fkpLS1NUVJR8fX1lMpn04osvugWNweju7u6zr68f7BMnTlRmZmafxw12X0dsbKwCAwO1Z88eZ7AICgqSJF25csVtfE/bnZu6AQAAgPvRkAeLiIgI1dTUKCQkRNHR0XcdW11drZs3byonJ0cWi8Wlr62tze32IJPJ1Odc/v7+amtrc2u/ePHiAKr/rP6PP/5YMTExfQYjI27duuXyVKipU6dKkk6dOqXvf//7LmMbGhpkMpk0adKkIa8DAAAAGEpD/su5Z2N1fn5+r6sFd94G1fPD3eFwuIyprKx0GdfDbDa7/Ci/U2RkpBoaGlz2I1y7dk1VVVUDqt9ms6mlpUU7d+7stb+3uj6vr8fDvvrqq7p+/boeeeQRZ1tERISmTJmi3/zmNy6rFleuXNFvfvMbxcTEOFc1AAAAgPvVkK9YTJ06Venp6SoqKlJKSooSExMVHBysq1ev6syZMzp27JiOHz8uSYqPj1deXp7Wrl0ru92u0aNH6+TJk6qpqVF4eLhbMJk2bZr27dunrVu3Kjo6WiaTSQkJCTKbzbLb7crOzlZGRoasVqva29u1d+9ehYaG9isM9HjmmWf01ltvacuWLaqtrVVMTIz8/PzU3Nys2tpaeXt7uz0R6/N+8pOfyN/fX48++qhCQkJ0/fp1/e53v9PRo0f14IMPKj093WV8VlaWMjIytGzZMi1cuFCS9Morr+jTTz/VX//1X/e7dgAAAGCkDMsei/T0dE2ZMkW7du1SeXm5Ojo6FBAQoAkTJmjVqlXOceHh4crNzVV+fr5KSkrk4eGh6dOnq7CwUBs3blRTU5PLvMuXL1dbW5t2796t9vZ2ORwOVVVVyWw2a968ebpy5YoqKiq0adMmhYWFadmyZfLw8BjQ06U8PT21efNm7dmzRwcPHnSGiODgYE2dOtXtjdq9SUpK0uuvv669e/eqtbVVnp6eCg8P15IlS/TDH/5QY8aMcRnfc81bt27V1q1bZTKZ9Oijj+oXv/iFHn744X7XDgAAAIwUk+Pz9yHhS2/uC5+MdAnAl9rpJUdGuoT7ysaQF3ptt7/e98MxBuPyL08O6XyfF3b4xrDODwBfd0O/OxkAAADA1w7BAgAAAIBhBAsAAAAAhhEsAAAAABhGsAAAAABgGMECAAAAgGEECwAAAACG8R6Lr6CioiKlpqbKy8trpEsBAADA1wQrFgAAAAAMI1gAAAAAMIxgAQAAAMAwggUAAAAAwwgWAAAAAAwjWAAAAAAwjGABAAAAwDCCBQAAAADDCBYAAAAADCNYAAAAADCMYAEAAADAMJPD4XCMdBEYWnNf+GSkSxi000uODOq4jSEv9Nlnf7271/Z11rcHdS4AQ+/5T7pGugQAgEGsWAAAAAAwjGABAAAAwDCCBQAAAADDCBYAAAAADCNYAAAAADCMYAEAAADAMIIFAAAAAMMIFgAAAAAM8xzI4Lq6OmVkZPTZX1JSomnTphkuqi9lZWUaPXq0FixYMGznGAqNjY167bXXVFtbq0uXLkmSIiIitGDBAiUlJcnT8+5fe25urv71X/9VZrNZb7zxxr0oGQAAADBkQMGix9y5cxUfH+/WHhERYbiguykvL1doaOh9Hyxeeuklvf3225o1a5aSkpLU3d2t3/72t/rFL36ho0ePKi8vTyaTqddj33vvPe3cuVPf+MY3xEvRAQAA8GUxqGAxadIkWa3Woa5lRHV1dam7u1s+Pj6G51q4cKHWrVvnMtfChQuVnZ2tQ4cO6be//a2efPJJt+O6u7v1/PPPKy4uTjdu3NCZM2cM1wIAAADcC8O2x+Lw4cNKS0tTQkKC4uPjtWTJEh05cqTXcZmZmbLZbIqNjdXs2bOVlZWls2fPuoyzWCxqamrSiRMnZLFYnJ+eW40sFovWrVvnNv/+/ftlsVhUV1fnbCssLJTFYtG5c+eUk5Mjq9WquLg4NTQ0SJJu376t4uJi2e12xcXFadasWcrMzFRjY2O/rv073/lOrwFlzpw5kqRz5871etyuXbv0n//5n1q9enW/zgMAAADcLwa1YtHZ2anW1laXNi8vL/n5+UmSCgoKVFxcrLi4OGVkZMjDw0PV1dVas2aNVq9eLbvd7jyuoqJC/v7+SkpKUlBQkC5cuKDKykqlpaWptLRUkZGRkqT169crJydHY8aM0dKlS53Hjx07djCXIEnKzs6Wj4+PFi9eLJPJpKCgIHV1dWnlypU6deqUrFar7Ha7rl+/7qxp+/btmjJlyqDOd/nyZUlSQECAW19TU5O2bdumZ599VqGhoYO+JgAAAGAkDCpYFBYWqrCw0KVtzpw52rBhgxobG1VcXKzU1FStWLHC2b9o0SJlZWUpPz9fNpvNGULy8vJkNptd5rLZbEpJSVFZWZnWrFkjSbJardq6dasCAgKG7DasUaNGqaCgwGUz9c6dO1VfX6+8vDzFxsY625OTk7Vw4UJt3rxZRUVFAz7XzZs39fLLL2vUqFH67ne/69a/YcMGhYWFafHixYO7GAAAAGAEDSpYJCUlKTEx0aUtMDBQknTo0CGZTCbZbDa3VY2EhAQdPXpUDQ0NmjlzpiQ5Q4XD4dCNGzfU1dWlsWPHavz48Tp9+vRgyuu3lJQUtyc0HTp0SFFRUZo8ebJb/TNmzNCBAwfU2dkpX1/ffp+nu7tb2dnZunjxon7+85/L39/fpf+1117Tm2++qR07dnzhE6MAAACA+9GgfsVGRkZqxowZvfadP39eDodDycnJfR7f0tLi/HNjY6O2bdum+vp6dXR0uIwLCwsbTHn91nOb1Z3Onz+vW7duuQWnO7W2tiokJKRf5/j000+1fv16HT16VMuXL9dTTz3l0t/W1qacnBz92Z/9maZPnz6wCwAAAADuE8Pyz+Mmk0m5ubny8Oh9b/iECRMkSc3NzUpPT5efn5/S0tIUFRUlX19fmUwmvfjii25BYzC6u7v77Otr1WHixInKzMzs87j+7uv49NNP9bOf/UwHDhzQs88+67I3pMf27dvV0dGh73//+/rwww+d7bdu3ZLD4dCHH34oLy+vfgcZAAAAYCQMebCIiIhQTU2NQkJCFB0dfdex1dXVunnzpnJycmSxWFz62tra5O3t7dLW17sfJMnf319tbW1u7RcvXhxA9Z/V//HHHysmJqbPYNQfPaFi//79SktL03PPPdfruKamJnV0dOgv//Ive+1PSkrSQw89pIqKikHXAgAAAAy3IQ8WVqtVr7zyivLz8/WLX/xCDzzwgEt/S0uLcz9Gzw/3z78IrrKyUi0tLW5PRzKbzbp27Vqv542MjFRDQ4PL/odr166pqqpqQPXbbDZt2bJFO3fu1I9+9CO3/jvr74vD4dDPf/5z7d+/X6mpqfqrv/qrPscuWbJE8+bNc2svKirSxYsX9dOf/lSjRo0a0DUAAAAA99qQB4upU6cqPT1dRUVFSklJUWJiooKDg3X16lWdOXNGx44d0/HjxyVJ8fHxysvL09q1a2W32zV69GidPHlSNTU1Cg8Pd7uNadq0adq3b5+2bt2q6OhomUwmJSQkyGw2y263Kzs7WxkZGbJarWpvb9fevXsVGhrqsqfjizzzzDN66623tGXLFtXW1iomJkZ+fn5qbm5WbW2tvL293Z6I9XlbtmxRVVWVHn74YUVHR+vgwYMu/eHh4Xr00Uclyfnfz6uoqFBTU9Nd93oAAAAA94th2WORnp6uKVOmaNeuXSovL1dHR4cCAgI0YcIErVq1yjkuPDxcubm5ys/PV0lJiTw8PDR9+nQVFhZq48aNampqcpl3+fLlamtr0+7du9Xe3i6Hw6GqqiqZzWbNmzdPV65cUUVFhTZt2qSwsDAtW7ZMHh4eA3q6lKenpzZv3qw9e/bo4MGDzhARHBysqVOnav78+V84x7vvvitJev/997V27Vq3/vnz5/cZKAAAAIAvI5Pj8/ch4Utv7gufjHQJg3Z6ifvb2ftjY8gLffbZX+99A/8669uDOheAoff8J10jXQIAwKDB704GAAAAgP8PwQIAAACAYQQLAAAAAIYRLAAAAAAYRrAAAAAAYBjBAgAAAIBhPG72K6ioqEipqany8vIa6VIAAADwNcGKBQAAAADDCBYAAAAADCNYAAAAADCMYAEAAADAMIIFAAAAAMMIFgAAAAAMI1gAAAAAMIxgAQAAAMAwggUAAAAAwwgWAAAAAAwjWAAAAAAwjGABAAAAwDCTw+FwjHQRGFqPBT4x0iWMqHFZ1YM67vSSI0NcyZfTxpAXRroE9MH+evewzOs1p2ZY5gUAfL2wYgEAAADAMIIFAAAAAMMIFgAAAAAMI1gAAAAAMIxgAQAAAMAwggUAAAAAwwgWAAAAAAzzHMjguro6ZWRk9NlfUlKiadOmGS6qL2VlZRo9erQWLFgwbOcYCjdv3lRpaanOnDmj9957T5cvX9bjjz+uoqKiXsd3dXXpX//1X3Xw4EFdvHhR3/jGN/T4449rxYoVioqKurfFAwAAAIMwoGDRY+7cuYqPj3drj4iIMFzQ3ZSXlys0NPS+Dxatra0qKipSYGCgJk2apJaWlj7HOhwO/c3f/I1qamo0a9YsLVy4UB9//LH27Nmj1NRU/frXv9ZDDz10D6sHAAAABm5QwWLSpEmyWq1DXcuI6urqUnd3t3x8fAzPFRQUpAMHDujBBx+UJD355JN9jj169KhqamqUlJSkf/iHf3C2W61WLVy4UL/61a9UUFBguCYAAABgOA3bHovDhw8rLS1NCQkJio+P15IlS3TkyJFex2VmZspmsyk2NlazZ89WVlaWzp496zLOYrGoqalJJ06ckMVicX4uXbrk7F+3bp3b/Pv375fFYlFdXZ2zrbCwUBaLRefOnVNOTo6sVqvi4uLU0NAgSbp9+7aKi4tlt9sVFxenWbNmKTMzU42Njf26dm9vb2eo+CI9df3pn/6pS3t4eLgee+wxvf3222pubu7XXAAAAMBIGdSKRWdnp1pbW13avLy85OfnJ0kqKChQcXGx4uLilJGRIQ8PD1VXV2vNmjVavXq17Ha787iKigr5+/srKSlJQUFBunDhgiorK5WWlqbS0lJFRkZKktavX6+cnByNGTNGS5cudR4/duzYwVyCJCk7O1s+Pj5avHixTCaTgoKC1NXVpZUrV+rUqVOyWq2y2+26fv26s6bt27drypQpgz7n592+fVuS5Ovr69bX03b69GmFhIQM2TkBAACAoTaoYFFYWKjCwkKXtjlz5mjDhg1qbGxUcXGxUlNTtWLFCmf/okWLlJWVpfz8fNlsNmcIycvLk9lsdpnLZrMpJSVFZWVlWrNmjaTPbg3aunWrAgIChuw2rFGjRqmgoECenn/4Gnbu3Kn6+nrl5eUpNjbW2Z6cnKyFCxdq8+bNfW7CHoye/RO1tbX69re/7Wzv7OzU6dOnJYkVCwAAANz3BhUskpKSlJiY6NIWGBgoSTp06JBMJpNsNpvbqkZCQoKOHj2qhoYGzZw5U5KcocLhcOjGjRvq6urS2LFjNX78eOcP6+GSkpLiEip66o+KitLkyZPd6p8xY4YOHDigzs7OXlcYBsNqtaq4uFiFhYUym836kz/5E7W2tqqwsNB5/s7OziE5FwAAADBcBhUsIiMjNWPGjF77zp8/L4fDoeTk5D6Pv/MpSY2Njdq2bZvq6+vV0dHhMi4sLGww5fVbz21Wdzp//rxu3brlFpzu1NraOmS3Jn3zm99UQUGB1q5dq+eff97Z/vjjj2vJkiX69a9/rVGjRg3JuQAAAIDhMqhg8UVMJpNyc3Pl4dH73vAJEyZI+uwWn/T0dPn5+SktLU1RUVHy9fWVyWTSiy++6BY0BqO7u7vPvr5WHSZOnKjMzMw+jzOyr6Ov85WVlenDDz/UlStXFBwcrIiICG3ZskWSeJcFAAAA7ntDHiwiIiJUU1OjkJAQRUdH33VsdXW1bt68qZycHFksFpe+trY2eXt7u7SZTKY+5/L391dbW5tb+8WLFwdQ/Wf1f/zxx4qJiekzGA2XiIgIl3eB1NTUyM/PT9OnT7+ndQAAAAADNeS/nHs2Vufn5/e6WnDnbVA9P9wdDofLmMrKyl5fKmc2m3Xt2rVezxsZGamGhgaX/QjXrl1TVVXVgOq32WxqaWnRzp07e+2/28vuhtKuXbt07tw5paSkuG1uBwAAAO43Q75iMXXqVKWnp6uoqEgpKSlKTExUcHCwrl69qjNnzujYsWM6fvy4JCk+Pl55eXlau3at7Ha7Ro8erZMnT6qmpkbh4eFuwWTatGnat2+ftm7dqujoaJlMJiUkJMhsNstutys7O1sZGRmyWq1qb2/X3r17FRoaOqAw8Mwzz+itt97Sli1bVFtbq5iYGPn5+am5uVm1tbXy9vZ2eyJWb1555RW1t7dL+uzle83NzdqxY4ck6eGHH1ZCQoJz7I9//GOFhYXpoYcekslk0vHjx/V//+//1RNPPKG0tLR+1w4AAACMlGHZY5Genq4pU6Zo165dKi8vV0dHhwICAjRhwgStWrXKOS48PFy5ubnKz89XSUmJPDw8NH36dBUWFmrjxo1qampymXf58uVqa2vT7t271d7eLofDoaqqKpnNZs2bN09XrlxRRUWFNm3apLCwMC1btkweHh4DerqUp6enNm/erD179ujgwYPOEBEcHKypU6dq/vz5/ZqntLTUpf5Lly5p27ZtkqT58+e7BItHH31Uhw8f1quvvipJio6O1t/+7d/q6aef1gMPPNDv2gEAAICRYnJ8/j4kfOk9FvjESJcwosZlVQ/quNNL3N8M/3W0MeSFkS4BfbC/3vfDKIzwmlMzLPMCAL5e7u3uZAAAAABfSQQLAAAAAIYRLAAAAAAYRrAAAAAAYBjBAgAAAIBhBAsAAAAAhhEsAAAAABjGeyy+goqKipSamiovL6+RLgUAAABfE6xYAAAAADCMYAEAAADAMIIFAAAAAMMIFgAAAAAMI1gAAAAAMIxgAQAAAMAwggUAAAAAwwgWAAAAAAwjWAAAAAAwjGABAAAAwDCCBQAAAADDTA6HwzHSRWBozX3hk5Eu4b5xesmRkS7B6ffv/mykS8AIuPzLk8Myb0H1LZe/P/9J17CcBwCA/mLFAgAAAIBhBAsAAAAAhhEsAAAAABhGsAAAAABgGMECAAAAgGEECwAAAACGESwAAAAAGEawAAAAAGCY50AG19XVKSMjo8/+kpISTZs2zXBRfSkrK9Po0aO1YMGCYTvHULh586ZKS0t15swZvffee7p8+bIef/xxFRUV9ev4v/u7v9O//du/6aGHHlJFRcUwVwsAAAAYN6Bg0WPu3LmKj493a4+IiDBc0N2Ul5crNDT0vg8Wra2tKioqUmBgoCZNmqSWlpZ+H/vGG2/oN7/5jXx8fIaxQgAAAGBoDSpYTJo0SVardahrGVFdXV3q7u4ekh/0QUFBOnDggB588EFJ0pNPPtmv427evKl/+qd/0p//+Z/r//2//2e4DgAAAOBeGbY9FocPH1ZaWpoSEhIUHx+vJUuW6MiRI72Oy8zMlM1mU2xsrGbPnq2srCydPXvWZZzFYlFTU5NOnDghi8Xi/Fy6dMnZv27dOrf59+/fL4vForq6OmdbYWGhLBaLzp07p5ycHFmtVsXFxamhoUGSdPv2bRUXF8tutysuLk6zZs1SZmamGhsb+3Xt3t7ezlAxEAUFBfr000/1V3/1VwM+FgAAABhJg1qx6OzsVGtrq0ubl5eX/Pz8JH32A7m4uFhxcXHKyMiQh4eHqqurtWbNGq1evVp2u915XEVFhfz9/ZWUlKSgoCBduHBBlZWVSktLU2lpqSIjIyVJ69evV05OjsaMGaOlS5c6jx87duxgLkGSlJ2dLR8fHy1evFgmk0lBQUHq6urSypUrderUKVmtVtntdl2/ft1Z0/bt2zVlypRBn7Mvp0+fVkVFhZ5//nmNGjVqyOcHAAAAhtOggkVhYaEKCwtd2ubMmaMNGzaosbFRxcXFSk1N1YoVK5z9ixYtUlZWlvLz82Wz2ZwhJC8vT2az2WUum82mlJQUlZWVac2aNZIkq9WqrVu3KiAgYMhuwxo1apQKCgrk6fmHr2Hnzp2qr69XXl6eYmNjne3JyclauHChNm/e3O9N2P3V1dWln//855o5c6bmzJkzpHMDAAAA98KggkVSUpISExNd2gIDAyVJhw4dkslkks1mc1vVSEhI0NGjR9XQ0KCZM2dKkjNUOBwO3bhxQ11dXRo7dqzGjx+v06dPD6a8fktJSXEJFT31R0VFafLkyW71z5gxQwcOHFBnZ6d8fX2HrI6XX35ZH374oX71q18N2ZwAAADAvTSoYBEZGakZM2b02nf+/Hk5HA4lJyf3efydT0lqbGzUtm3bVF9fr46ODpdxYWFhgymv33pus7rT+fPndevWLbfgdKfW1laFhIQMSQ0ffvihduzYoaVLlyo8PHxI5gQAAADutUEFiy9iMpmUm5srD4/e94ZPmDBBktTc3Kz09HT5+fkpLS1NUVFR8vX1lclk0osvvugWNAaju7u7z76+Vh0mTpyozMzMPo8zsq/j8zZt2qRvfvOb+h//43/oww8/dLZ3d3erq6tLH374ocxms4KCgobsnAAAAMBQG/JgERERoZqaGoWEhCg6OvquY6urq3Xz5k3l5OTIYrG49LW1tcnb29ulzWQy9TmXv7+/2tra3NovXrw4gOo/q//jjz9WTExMn8FoKDU3N+vKlSsuG9rvlJSUpCeeeEKbN28e9loAAACAwRryYGG1WvXKK68oPz9fv/jFL/TAAw+49Le0tDj3Y/T8cHc4HC5jKisr1dLSotDQUJd2s9msa9eu9XreyMhINTQ0uOx/uHbtmqqqqgZUv81m05YtW7Rz50796Ec/cuu/s/6h8JOf/ETt7e1u7b/4xS/k7e2tzMxMVisAAABw3xvyYDF16lSlp6erqKhIKSkpSkxMVHBwsK5evaozZ87o2LFjOn78uCQpPj5eeXl5Wrt2rex2u0aPHq2TJ0+qpqZG4eHhbrcxTZs2Tfv27dPWrVsVHR0tk8mkhIQEmc1m2e12ZWdnKyMjQ1arVe3t7dq7d69CQ0MH9ObrZ555Rm+99Za2bNmi2tpaxcTEyM/PT83NzaqtrZW3t7fbE7F688orrzgDQ1dXl5qbm7Vjxw5J0sMPP6yEhARJ6nOvypYtW2Q2m++61wMAAAC4XwzLHov09HRNmTJFu3btUnl5uTo6OhQQEKAJEyZo1apVznHh4eHKzc1Vfn6+SkpK5OHhoenTp6uwsFAbN25UU1OTy7zLly9XW1ubdu/erfb2djkcDlVVVclsNmvevHm6cuWKKioqtGnTJoWFhWnZsmXy8PAY0NOlPD09tXnzZu3Zs0cHDx50hojg4GBNnTpV8+fP79c8paWlLvVfunRJ27ZtkyTNnz/fGSwAAACArwKT4/P3IeFLb+4Ln4x0CfeN00vc3/Y+Un7/7s9GugSMgMu/PDks8xZU33L5+/OfdA3LeQAA6K/h350MAAAA4CuPYAEAAADAMIIFAAAAAMMIFgAAAAAMI1gAAAAAMIxgAQAAAMAwHjf7FVRUVKTU1FR5eXmNdCkAAAD4mmDFAgAAAIBhBAsAAAAAhhEsAAAAABhGsAAAAABgGMECAAAAgGEECwAAAACGESwAAAAAGEawAAAAAGAYwQIAAACAYQQLAAAAAIYRLAAAAAAYRrAAAAAAYJjJ4XA4RroIDK25L3xieI5XY747BJXgfnP5lydHugQYFHb4xkiXAABAr1ixAAAAAGAYwQIAAACAYQQLAAAAAIYRLAAAAAAYRrAAAAAAYBjBAgAAAIBhBAsAAAAAhnkOZHBdXZ0yMjL67C8pKdG0adMMF9WXsrIyjR49WgsWLBi2cwyFhoYGvfzyy3r//ff10UcfSZJCQkKUmJiolJQUjRo1ymV8Xl6e/v3f/10ffvihrl+/roCAAH3729/WD3/4Q1kslpG4BAAAAGBABhQsesydO1fx8fFu7REREYYLupvy8nKFhobe98Higw8+UGdnp+bNm6egoCA5HA698847Ki4u1m9+8xu99NJL8vX1dY5vaGjQxIkT9b3vfU+jR49WS0uLDh06pIyMDP30pz+VzWYbwasBAAAAvtiggsWkSZNktVqHupYR1dXVpe7ubvn4+Biea/78+Zo/f75LW3JysqKjo5Wbm6s33nhDc+bMcfYVFRW5zbFo0SJ9//vf17/8y78QLAAAAHDfG7Y9FocPH1ZaWpoSEhIUHx+vJUuW6MiRI72Oy8zMlM1mU2xsrGbPnq2srCydPXvWZZzFYlFTU5NOnDghi8Xi/Fy6dMnZv27dOrf59+/fL4vForq6OmdbYWGhLBaLzp07p5ycHFmtVsXFxamhoUGSdPv2bRUXF8tutysuLk6zZs1SZmamGhsbDX0noaGhkqRr16594dhvfOMb8vf379dYAAAAYKQNasWis7NTra2tLm1eXl7y8/OTJBUUFKi4uFhxcXHKyMiQh4eHqqurtWbNGq1evVp2u915XEVFhfz9/ZWUlKSgoCBduHBBlZWVSktLU2lpqSIjIyVJ69evV05OjsaMGaOlS5c6jx87duxgLkGSlJ2dLR8fHy1evFgmk0lBQUHq6urSypUrderUKVmtVtntdl2/ft1Z0/bt2zVlypR+f089nzNnzigvL09eXl6aMWNGr+NbW1v16aef6urVq6qsrNT58+f1p3/6p4O+PgAAAOBeGVSwKCwsVGFhoUvbnDlztGHDBjU2Nqq4uFipqalasWKFs3/RokXKyspSfn6+bDabM4Tk5eXJbDa7zGWz2ZSSkqKysjKtWbNGkmS1WrV161YFBAQM2W1Yo0aNUkFBgTw9//A17Ny5U/X19crLy1NsbKyzPTk5WQsXLtTmzZt7vXWpN9u2bVNpaanz7w899JA2bdqk8PBwt7E3b95UYmKi8+8+Pj5KSkrS3/zN3wzm0gAAAIB7alDBIikpyeVHsCQFBgZKkg4dOiSTySSbzea2qpGQkKCjR4+qoaFBM2fOlCRnqHA4HLpx44a6uro0duxYjR8/XqdPnx5Mef2WkpLiEip66o+KitLkyZPd6p8xY4YOHDigzs5Ol83XfXn66acVGxur9vZ2NTQ0qL6+3m3OHj4+PsrPz1d3d7eampr02muvqaOjQ52dnW7BCwAAALjfDCpYREZG9nk7z/nz5+VwOJScnNzn8S0tLc4/NzY2atu2baqvr1dHR4fLuLCwsMGU1289t1nd6fz587p165ZbcLpTa2urQkJC+jV/zzkSExP15ptvauXKlZKkp556ymXsAw884PKdfv/739dzzz2njIwM7dy50y0AAQAAAPeTYfm1ajKZlJubKw+P3veGT5gwQZLU3Nys9PR0+fn5KS0tTVFRUfL19ZXJZNKLL77oFjQGo7u7u8++vlYdJk6cqMzMzD6PG+y+jtjYWAUGBmrPnj1uweLzHnjgAT311FP6p3/6J504cUJ/8id/MqhzAgAAAPfCkAeLiIgI1dTUKCQkRNHR0XcdW11drZs3byonJ8ftRXBtbW3y9vZ2aTOZTH3O5e/vr7a2Nrf2ixcvDqD6z+r/+OOPFRMT02cwMuLWrVv9ftLTrVu3JPXvKVIAAADASBryX849G6t79gt83p23QfX8cHc4HC5jKisrXcb1MJvNff7IjoyMVENDgzo7O51t165dU1VV1YDqt9lsamlp0c6dO3vt762uz7t69Wqv7a+++qquX7+uRx55xKXGTz75xG1sR0eH9u3bJw8PD02dOrWf1QMAAAAjY8hXLKZOnar09HQVFRUpJSVFiYmJCg4O1tWrV3XmzBkdO3ZMx48flyTFx8crLy9Pa9euld1u1+jRo3Xy5EnV1NQoPDzcLZhMmzZN+/bt09atWxUdHS2TyaSEhASZzWbZ7XZlZ2crIyNDVqtV7e3t2rt3r0JDQ/sVBno888wzeuutt7RlyxbV1tYqJiZGfn5+am5uVm1trby9vd2eiPV5P/nJT+Tv769HH31UISEhun79un73u9/p6NGjevDBB5Wenu4ce+LECb3wwgv63ve+p/DwcPn5+enSpUs6ePCg/vu//1vPPvus8/0XAAAAwP1qWPZYpKena8qUKdq1a5fKy8vV0dGhgIAATZgwQatWrXKOCw8PV25urvLz81VSUiIPDw9Nnz5dhYWF2rhxo5qamlzmXb58udra2rR79261t7fL4XCoqqpKZrNZ8+bN05UrV1RRUaFNmzYpLCxMy5Ytk4eHx4CeLuXp6anNmzdrz549OnjwoDNEBAcHa+rUqW5v1O5NUlKSXn/9de3du1etra3y9PRUeHi4lixZoh/+8IcaM2aMc+zEiRP15JNPqr6+XocOHVJnZ6fGjBmjKVOm6O/+7u/0xBNP9Lt2AAAAYKSYHJ+/DwlfenNfcL+1aqBejfnuEFSC+83lX54c6RJgUNjhGyNdAgAAvRr63ckAAAAAvnYIFgAAAAAMI1gAAAAAMIxgAQAAAMAwggUAAAAAwwgWAAAAAAwjWAAAAAAwjPdYfAUVFRUpNTVVXl5eI10KAAAAviZYsQAAAABgGMECAAAAgGEECwAAAACGESwAAAAAGEawAAAAAGAYwQIAAACAYQQLAAAAAIYRLAAAAAAYRrAAAAAAYBjBAgAAAIBhBAsAAAAAhpkcDodjpIvA0Hos8AmNy6oe6TLwJfAXf/s9tzb7690jUMlXz+VfnuyzL+zwjXtYCQAA9wYrFgAAAAAMI1gAAAAAMIxgAQAAAMAwggUAAAAAwwgWAAAAAAwjWAAAAAAwjGABAAAAwDCCBQAAAADDPAcyuK6uThkZGX32l5SUaNq0aYaL6ktZWZlGjx6tBQsWDNs5hkJDQ4Nefvllvf/++/roo48kSSEhIUpMTFRKSopGjRrlMv748eN6/fXX1djYqP/4j//Q7du3tW3bNlkslpEoHwAAABiwAQWLHnPnzlV8fLxbe0REhOGC7qa8vFyhoaH3fbD44IMP1NnZqXnz5ikoKEgOh0PvvPOOiouL9Zvf/EYvvfSSfH19neNfe+01vfbaa5owYYKioqL0/vvvj2D1AAAAwMANKlhMmjRJVqt1qGsZUV1dXeru7paPj4/huebPn6/58+e7tCUnJys6Olq5ubl64403NGfOHGff8uXL9fd///fy9vZ2rnQAAAAAXybDtsfi8OHDSktLU0JCguLj47VkyRIdOXKk13GZmZmy2WyKjY3V7NmzlZWVpbNnz7qMs1gsampq0okTJ2SxWJyfS5cuOfvXrVvnNv/+/ftlsVhUV1fnbCssLJTFYtG5c+eUk5Mjq9WquLg4NTQ0SJJu376t4uJi2e12xcXFadasWcrMzFRjY6Oh7yQ0NFSSdO3aNZf2cePGydvb29DcAAAAwEga1IpFZ2enWltbXdq8vLzk5+cnSSooKFBxcbHi4uKUkZEhDw8PVVdXa82aNVq9erXsdrvzuIqKCvn7+yspKUlBQUG6cOGCKisrlZaWptLSUkVGRkqS1q9fr5ycHI0ZM0ZLly51Hj927NjBXIIkKTs7Wz4+Plq8eLFMJpOCgoLU1dWllStX6tSpU7JarbLb7bp+/bqzpu3bt2vKlCn9/p56PmfOnFFeXp68vLw0Y8aMQdcMAAAA3I8GFSwKCwtVWFjo0jZnzhxt2LBBjY2NKi4uVmpqqlasWOHsX7RokbKyspSfny+bzeYMIXl5eTKbzS5z2Ww2paSkqKysTGvWrJEkWa1Wbd26VQEBAUN2G9aoUaNUUFAgT88/fA07d+5UfX298vLyFBsb62xPTk7WwoULtXnzZhUVFfVr/m3btqm0tNT594ceekibNm1SeHj4kNQPAAAA3C8GFSySkpKUmJjo0hYYGChJOnTokEwmk2w2m9uqRkJCgo4ePaqGhgbNnDlTkpyhwuFw6MaNG+rq6tLYsWM1fvx4nT59ejDl9VtKSopLqOipPyoqSpMnT3arf8aMGTpw4IA6OztdNl/35emnn1ZsbKza29vV0NCg+vp6tzkBAACAr4JBBYvIyMg+b+c5f/68HA6HkpOT+zy+paXF+efGxkZt27ZN9fX16ujocBkXFhY2mPL6rec2qzudP39et27dcgtOd2ptbVVISEi/5u85R2Jiot58802tXLlSkvTUU08NsmoAAADg/jOoYPFFTCaTcnNz5eHR+97wCRMmSJKam5uVnp4uPz8/paWlKSoqSr6+vjKZTHrxxRfdgsZgdHd399nX16rDxIkTlZmZ2edxg93XERsbq8DAQO3Zs4dgAQAAgK+UIQ8WERERqqmpUUhIiKKjo+86trq6Wjdv3lROTo7by+Da2trcnpRkMpn6nMvf319tbW1u7RcvXhxA9Z/V//HHHysmJqbPYGTErVu33J4KBQAAAHzZDfkv556N1fn5+b2uFtx5G1TPD3eHw+EyprKy0mVcD7PZ3OeP8sjISDU0NKizs9PZdu3aNVVVVQ2ofpvNppaWFu3cubPX/t7q+ryrV6/22v7qq6/q+vXreuSRRwZUEwAAAHC/G/IVi6lTpyo9PV1FRUVKSUlRYmKigoODdfXqVZ05c0bHjh3T8ePHJUnx8fHKy8vT2rVrZbfbNXr0aJ08eVI1NTUKDw93CybTpk3Tvn37tHXrVkVHR8tkMikhIUFms1l2u13Z2dnKyMiQ1WpVe3u79u7dq9DQ0H6FgR7PPPOM3nrrLW3ZskW1tbWKiYmRn5+fmpubVVtbK29vb7cnYn3eT37yE/n7++vRRx9VSEiIrl+/rt/97nc6evSoHnzwQaWnp7uMP3v2rI4ePSpJOnXqlCTp4MGD+t3vfifpsydqjRo1qt/XAAAAANxrw7LHIj09XVOmTNGuXbtUXl6ujo4OBQQEaMKECVq1apVzXHh4uHJzc5Wfn6+SkhJ5eHho+vTpKiws1MaNG9XU1OQy7/Lly9XW1qbdu3ervb1dDodDVVVVMpvNmjdvnq5cuaKKigpt2rRJYWFhWrZsmTw8PAb0dClPT09t3rxZe/bs0cGDB50hIjg4WFOnTnV7o3ZvkpKS9Prrr2vv3r1qbW2Vp6enwsPDtWTJEv3whz/UmDFjXMb3bGC/050rLVarlWABAACA+5rJ8fn7kPCl91jgExqXVT3SZeBL4C/+9ntubfbX+37gAfrv8i9P9tkXdvjGPawEAIB7Y+h3JwMAAAD42iFYAAAAADCMYAEAAADAMIIFAAAAAMMIFgAAAAAMI1gAAAAAMIzHzX4FFRUVKTU1VV5eXiNdCgAAAL4mWLEAAAAAYBjBAgAAAIBhBAsAAAAAhhEsAAAAABhGsAAAAABgGMECAAAAgGEECwAAAACGESwAAAAAGEawAAAAAGAYwQIAAACAYQQLAAAAAIYRLAAAAAAYZnI4HI6RLgJD67HAJ0a6BAyxcVnVw36O00uODPs5hsvGkBfc2uyvd/fr2HXWt4e6HDfPf9I17OcAAGCksWIBAAAAwDCCBQAAAADDCBYAAAAADCNYAAAAADCMYAEAAADAMIIFAAAAAMMIFgAAAAAM8xzOyevq6pSRkdFnf0lJiaZNmzZs5y8rK9Po0aO1YMGCYTvHULlw4YK2bdumt99+W+3t7XrwwQc1b948/eVf/qV8fHxGujwAAADgroY1WPSYO3eu4uPj3dojIiKG9bzl5eUKDQ2974PF73//e6Wmpqq7u1t//ud/rm9961tqaGjQjh07dPr0aeXm5spkMo10mQAAAECf7kmwmDRpkqxW67041T3T1dWl7u7uIVlNyMvL0/Xr17Vjxw5Nnz5dkvSDH/xA48ePV35+vg4dOvSV+/4AAADw1XLf7LE4fPiw0tLSlJCQoPj4eC1ZskRHjhzpdVxmZqZsNptiY2M1e/ZsZWVl6ezZsy7jLBaLmpqadOLECVksFufn0qVLzv5169a5zb9//35ZLBbV1dU52woLC2WxWHTu3Dnl5OTIarUqLi5ODQ0NkqTbt2+ruLhYdrtdcXFxmjVrljIzM9XY2Niva6+rq1NkZKQzVPToWWnZv39/v+YBAAAARso9WbHo7OxUa2urS5uXl5f8/PwkSQUFBSouLlZcXJwyMjLk4eGh6upqrVmzRqtXr5bdbnceV1FRIX9/fyUlJSkoKEgXLlxQZWWl0tLSVFpaqsjISEnS+vXrlZOTozFjxmjp0qXO48eOHTvo68jOzpaPj48WL14sk8mkoKAgdXV1aeXKlTp16pSsVqvsdruuX7/urGn79u2aMmXKXef95JNP5Ovr69be0/bOO+/I4XBwOxQAAADuW/ckWBQWFqqwsNClbc6cOdqwYYMaGxtVXFys1NRUrVixwtm/aNEiZWVlKT8/XzabzRlC8vLyZDabXeay2WxKSUlRWVmZ1qxZI0myWq3aunWrAgIChuw2olGjRqmgoECenn/42nbu3Kn6+nrl5eUpNjbW2Z6cnKyFCxdq8+bNKioquuu8Dz30kM6fP6+rV68qKCjI2d6zanLz5k1du3ZN/v7+Q3IdAAAAwFC7J8EiKSlJiYmJLm2BgYGSpEOHDslkMslms7mtaiQkJOjo0aNqaGjQzJkzJckZKhwOh27cuKGuri6NHTtW48eP1+nTp4f1OlJSUlxCRU/9UVFRmjx5slv9M2bM0IEDB9TZ2dnrikSPH/7wh/rHf/xHZWVl6cc//rG+9a1v6fTp0/rVr34lT09PdXV1qbOzk2ABAACA+9Y9CRaRkZGaMWNGr33nz5+Xw+FQcnJyn8e3tLQ4/9zY2Kht27apvr5eHR0dLuPCwsKGpuA+9Nxmdafz58/r1q1bbsHpTq2trQoJCemz/6mnnlJra6u2bdum5557TtJnt4qlpqbqt7/9rd59913nig0AAABwP7onweKLmEwm5ebmysOj973kEyZMkCQ1NzcrPT1dfn5+SktLU1RUlHx9fWUymfTiiy+6BY3B6O7u7rOvr1WHiRMnKjMzs8/j+rOvY9GiRXr66af1H//xH7p9+7YmTJig0aNHa/fu3QoKCtKoUaO+uHgAAABghIx4sIiIiFBNTY1CQkIUHR1917HV1dW6efOmcnJyZLFYXPra2trk7e3t0na3zc7+/v5qa2tza7948eIAqv+s/o8//lgxMTF9BqP+8vb2dtno/e677+rjjz/Wn/3ZnxmaFwAAABhuI/642Z6N1fn5+b2uFtx5G1TPD3eHw+EyprKy0mVcD7PZrGvXrvV63sjISDU0NKizs9PZdu3aNVVVVQ2ofpvNppaWFu3cubPX/t7q6o9bt27pxRdflLe3t370ox8Nag4AAADgXhnxFYupU6cqPT1dRUVFSklJUWJiooKDg3X16lWdOXNGx44d0/HjxyVJ8fHxysvL09q1a2W32zV69GidPHlSNTU1Cg8Pdwsm06ZN0759+7R161ZFR0fLZDIpISFBZrNZdrtd2dnZysjIkNVqVXt7u/bu3avQ0NABhYFnnnlGb731lrZs2aLa2lrFxMTIz89Pzc3Nqq2tlbe3t9sTsT7v3Llz+ulPf6onnnhC48aN00cffaRXX31VFy9e1Nq1axUVFTXg7xUAAAC4l0Y8WEhSenq6pkyZol27dqm8vFwdHR0KCAjQhAkTtGrVKue48PBw5ebmKj8/XyUlJfLw8ND06dNVWFiojRs3qqmpyWXe5cuXq62tTbt371Z7e7scDoeqqqpkNps1b948XblyRRUVFdq0aZPCwsK0bNkyeXh4DOjpUp6entq8ebP27NmjgwcPOkNEcHCwpk6dqvnz53/hHGPGjNG4ceO0d+9effTRRxo1apQee+wxrV+/Xo888ki/awEAAABGisnx+fuK8KX3WOATI10Chti4rOphP8fpJe5vuv+y2Bjyglub/fW+H8Rwp3XWt4e6HDfPf9I17OcAAGCkjfgeCwAAAABffgQLAAAAAIYRLAAAAAAYRrAAAAAAYBjBAgAAAIBhBAsAAAAAhhEsAAAAABjGeyy+goqKipSamiovL6+RLgUAAABfE6xYAAAAADCMYAEAAADAMIIFAAAAAMMIFgAAAAAMI1gAAAAAMIxgAQAAAMAwggUAAAAAwwgWAAAAAAwjWAAAAAAwjGABAAAAwDCCBQAAAADDTA6HwzHSRWBoPRb4xEiX8LUwLqu61/bTS47c40runY0hL8j+evdIl3Hf8JpTM9IlAABw32DFAgAAAIBhBAsAAAAAhhEsAAAAABhGsAAAAABgGMECAAAAgGEECwAAAACGESwAAAAAGEawAAAAAGCY50AG19XVKSMjo8/+kpISTZs2zXBRfSkrK9Po0aO1YMGCYTvHULh586ZKS0t15swZvffee7p8+bIef/xxFRUV9Tre4XDo//yf/6OKigp98MEH+uSTTxQSEqI5c+bomWee0ahRo+7xFQAAAAADM6Bg0WPu3LmKj493a4+IiDBc0N2Ul5crNDT0vg8Wra2tKioqUmBgoCZNmqSWlpa7ji8oKFBJSYliYmL07LPPytPTU/X19SosLNSxY8dUUlIik8l0j6oHAAAABm5QwWLSpEmyWq1DXcuI6urqUnd3t3x8fAzPFRQUpAMHDujBBx+UJD355JN3PW95ebkmTZqk/Px8eXh8dndacnKyPD09dejQIb3//vv6oz/6I8N1AQAAAMNl2PZYHD58WGlpaUpISFB8fLyWLFmiI0eO9DouMzNTNptNsbGxmj17trKysnT27FmXcRaLRU1NTTpx4oQsFovzc+nSJWf/unXr3Obfv3+/LBaL6urqnG2FhYWyWCw6d+6ccnJyZLVaFRcXp4aGBknS7du3VVxcLLvdrri4OM2aNUuZmZlqbGzs17V7e3s7Q8UX6erq0q1btxQYGOgMFT2CgoIkSWazuV9zAQAAACNlUCsWnZ2dam1tdWnz8vKSn5+fpM9u7SkuLlZcXJwyMjLk4eGh6upqrVmzRqtXr5bdbnceV1FRIX9/fyUlJSkoKEgXLlxQZWWl0tLSVFpaqsjISEnS+vXrlZOTozFjxmjp0qXO48eOHTuYS5AkZWdny8fHR4sXL5bJZFJQUJC6urq0cuVKnTp1SlarVXa7XdevX3fWtH37dk2ZMmXQ5/w8X19fPfbYY3rzzTf1L//yL5o9e7YeeOAB1dfXa8+ePZo3b57zOwAAAADuV4MKFoWFhSosLHRpmzNnjjZs2KDGxkYVFxcrNTVVK1ascPYvWrRIWVlZys/Pl81mc4aQvLw8t3+Rt9lsSklJUVlZmdasWSNJslqt2rp1qwICAobsNqxRo0apoKBAnp5/+Bp27typ+vp65eXlKTY21tmenJyshQsXavPmzX1uwh6sn//851q3bp3++Z//Wf/8z/8sSTKZTFq6dOldN8sDAAAA94tBBYukpCQlJia6tAUGBkqSDh06JJPJJJvN5raqkZCQoKNHj6qhoUEzZ86U9IfbfBwOh27cuKGuri6NHTtW48eP1+nTpwdTXr+lpKS4hIqe+qOiojR58mS3+mfMmKEDBw6os7NTvr6+Q1aHt7e3wsLCZLPZFBcXJ0l6/fXX9etf/1re3t5KS0sbsnMBAAAAw2FQweL/397dx9V4/38Af51Kp3QrRaVSyk0ljeWuCJvbCmMpiyGRxNwz22TGGFmR3JURo9xkbhdGXzffXxoLo1BjlW3IXXRH912/Pzw6X8c5pc6JTK/n4+GhPtfn+lzv61zXdTrvc30+n8vCwgJdu3aVuywzMxOCIMDT07PK9V+cJSktLQ0bN27ExYsXUVhYKFWvRYsWioRXY/K6GGVmZqK4uFgmcXpRTk4OjI2N6ySGoqIijB8/Hm3btsV3330nKR8wYAC++OILRERE4MMPP4SlpWWdbI+IiIiI6HVQKLF4FZFIhDVr1sgMRq5kbW0NALh37x78/f2hpaUFPz8/WFpaQkNDAyKRCCEhITKJhiLKy8urXFbVXQcbGxvMnDmzyvWUGdfxsvj4ePz9999S3cYq9e3bFydOnMDly5eZWBARERHRW63OEwtzc3MkJibC2NgYVlZW1dY9deoUnj17htDQUDg5OUkty83Nhbq6ulRZdc9y0NPTQ25urkz5nTt3ahH98/ifPHmCzp07V5kY1aWHDx8CACoqKmSWVSZF1SVHRERERERvgzr/5Fw5sHrdunVyPxC/2A2q8oO7IAhSdfbv3y/3oXKamprIy8uTu10LCwukpKSgqKhIUpaXl4dDhw7VKn53d3dkZ2cjOjpa7vJXPeyutiqTr59//llmWWWZvb19nW6TiIiIiKiu1fkdC3t7e/j7+yMyMhI+Pj7o27cvjIyM8OjRI6SmpuLs2bM4d+4cAMDFxQXh4eFYuHAhvLy8oKOjgytXriAxMRFmZmYyiYmDgwMOHjyIDRs2wMrKCiKRCK6urtDU1ISXlxeCgoIQEBAANzc35Ofn48CBAzAxMalVMvDJJ5/g/PnzCAsLQ1JSEjp37gwtLS3cu3cPSUlJUFdXl5kRS57du3cjPz8fwPNnVdy7dw8//PADAKBNmzZwdXUF8Pzhefb29jh79iwmTpyIPn36AHh+N+f3339H37590a5duxrHT0RERERUH17LGAt/f3/Y2dlh165d2LlzJwoLC2FgYABra2vMmTNHUs/MzAxr1qzBunXrEBUVBRUVFTg6OiIiIgLBwcHIysqSajcwMBC5ubmIjY1Ffn4+BEHAoUOHoKmpiUGDBuHhw4fYs2cPVq1ahRYtWmDChAlQUVGp1exSampqWL16Nfbu3YsjR45IkggjIyPY29vDw8OjRu3s2LFDKv67d+9i48aNAAAPDw9JYqGqqor169dj69atOHnyJMLDwyESiWBubo7PPvsMo0aNqnHsRERERET1RSS83A+J/vU6Nu1R3yE0CM1mn5JbfnWs7BPm3xXBxsvgdZJjfio16pdY3yEQERG9NV7/6GQiIiIiInrnMbEgIiIiIiKlMbEgIiIiIiKlMbEgIiIiIiKlMbEgIiIiIiKlMbEgIiIiIiKlcbrZd1BkZCR8fX3RqFGj+g6FiIiIiBoI3rEgIiIiIiKlMbEgIiIiIiKlMbEgIiIiIiKlMbEgIiIiIiKlMbEgIiIiIiKlMbEgIiIiIiKlMbEgIiIiIiKlMbEgIiIiIiKlMbEgIiIiIiKlMbEgIiIiIiKlMbEgIiIiIiKlMbEgIiIiIiKliQRBEOo7CKpbHZv2kCmb80BUD5HU3nWNX+s7BCK5lpaW1XcIREREbzXesSAiIiIiIqUxsSAiIiIiIqUxsSAiIiIiIqUxsSAiIiIiIqUxsSAiIiIiIqUxsSAiIiIiIqUxsSAiIiIiIqWp1abyhQsXEBAQUOXyqKgoODg4KB1UVWJiYqCjo4PBgwe/tm3UhbS0NBw7dgxJSUm4e/cuAMDc3ByDBw/GsGHDoKYm/bIvWrQIP//8s9y2li9fjr59+772mImIiIiIlFGrxKLSgAED4OLiIlNubm6udEDV2blzJ0xMTN76xGLbtm347bff0Lt3bwwbNgzl5eVISEjAihUrcObMGYSHh0Mkkn1g3eLFi2XK2rdv/yZCJiIiIiJSikKJRbt27eDm5lbXsdSrsrIylJeXQywWK92Wt7c3Fi1aJNWWt7c3goKCcPToUSQkJKBnz54y671rrykRERERNRyvbYzF8ePH4efnB1dXV7i4uGDs2LGIj4+XW2/mzJlwd3dH9+7d8eGHH2L27Nm4efOmVD0nJydkZWXh0qVLcHJykvyr7Grk5OSERYsWybR/+PBhODk54cKFC5KyiIgIODk5IT09HaGhoXBzc4OzszNSUlIAACUlJdiyZQu8vLzg7OyM3r17Y+bMmUhLS6vRvr/33ntyE5R+/foBANLT0+WuJwgCCgoKUFFRUaPtEBERERG9LRS6Y1FUVIScnBypskaNGkFLSwsAsH79emzZsgXOzs4ICAiAiooKTp06hfnz52PevHnw8vKSrLdnzx7o6elh2LBhMDQ0xO3bt7F//374+flhx44dsLCwAPC8m1BoaCj09fUxfvx4yfpNmjRRZBcAAEFBQRCLxRg1ahREIhEMDQ1RVlaGzz77DMnJyXBzc4OXlxcKCgokMW3atAl2dnYKbe/BgwcAAAMDA7nLe/fujadPn6JRo0bo2LEjAgMD2RWKiIiIiP4VFEosIiIiEBERIVXWr18/fPfdd0hLS8OWLVvg6+uLKVOmSJaPHDkSs2fPxrp16+Du7i5JQsLDw6GpqSnVlru7O3x8fBATE4P58+cDeN5NaMOGDTAwMKizLkPa2tpYv3691GDq6OhoXLx4EeHh4ejevbuk3NPTE97e3li9ejUiIyNrva1nz55h+/bt0NbWRq9evaSWNW3aFD4+PrC1tYWmpiZu3LiBnTt3YsKECQgLC0PXrl0V30kiIiIiojdAocRi2LBhMjMVNW3aFABw9OhRiEQiuLu7y9zVcHV1xZkzZ5CSkoJu3boBgCSpEAQBT58+RVlZGZo0aYKWLVvi6tWrioRXYz4+PjIzNB09ehSWlpawtbWVib9r166Ii4tDUVERNDQ0aryd8vJyBAUF4c6dO/j222+hp6cntfyzzz6T+r13794YOHAgfHx8sHz5cuzfv792O0ZERERE9IYplFhYWFhU+S16ZmYmBEGAp6dnletnZ2dLfk5LS8PGjRtx8eJFFBYWStVr0aKFIuHVWGU3qxdlZmaiuLi42ilec3JyYGxsXKNtVFRUYPHixThz5gwCAwMxcODAGsfWr18/HD58GH/99RdatmxZo/WIiIiIiOqDQonFq4hEIqxZswYqKvLHhltbWwMA7t27B39/f2hpacHPzw+WlpbQ0NCASCRCSEiITKKhiPLy8iqXVXXXwcbGBjNnzqxyvZqO66ioqMCSJUsQFxeHiRMnSo0NqQkTExMAzxMZJhZERERE9Dar88TC3NwciYmJMDY2hpWVVbV1T506hWfPniE0NBROTk5Sy3Jzc6Guri5VJu/ZD5X09PSQm5srU37nzp1aRP88/idPnqBz585VJkY1UZlUHD58GH5+fpg0aVKt2/jnn38A/K+bGRERERHR26rOp5utHFi9bt06uXcLXuwGVfnBXRAEqTr79++XqldJU1MTeXl5crdrYWGBlJQUFBUVScry8vJw6NChWsXv7u6O7OxsREdHy10uL66XCYKAb7/9FocPH4avry8mT55cZd3CwkIUFxfLlKelpSE+Ph5WVlYwMzOr+Q4QEREREdWDOr9jYW9vD39/f0RGRsLHxwd9+/aFkZERHj16hNTUVJw9exbnzp0DALi4uCA8PBwLFy6El5cXdHR0cOXKFSQmJsLMzEwmMXFwcMDBgwexYcMGWFlZQSQSwdXVFZqamvDy8kJQUBACAgLg5uaG/Px8HDhwACYmJjVKBip98sknOH/+PMLCwpCUlITOnTtDS0sL9+7dQ1JSEtTV1WVmxHpZWFgYDh06hDZt2sDKygpHjhyRWm5mZoYOHToAAP7++29MmzYNvXv3hrm5OTQ1NXHz5k0cOnQIKioq+Oqrr2ocOxERERFRfXktYyz8/f1hZ2eHXbt2YefOnSgsLISBgQGsra0xZ84cST0zMzOsWbMG69atQ1RUFFRUVODo6IiIiAgEBwcjKytLqt3AwEDk5uYiNjYW+fn5EAQBhw4dgqamJgYNGoSHDx9iz549WLVqFVq0aIEJEyZARUWlVrNLqampYfXq1di7dy+OHDkiSSKMjIxgb28PDw+PV7Zx/fp1AMCNGzewcOFCmeUeHh6SxKJp06bo0qULLly4gGPHjqGoqAiGhobo168ffH19YWlpWePYiYiIiIjqi0h4uR8S/et1bNpDpmzOg6rHp7xNrmv8Wt8hEMm1tLSsvkMgIiJ6q9X5GAsiIiIiImp4mFgQEREREZHSmFgQEREREZHSmFgQEREREZHSmFgQEREREZHSmFgQEREREZHSmFgQEREREZHS+ByLd1BkZCR8fX3RqFGj+g6FiIiIiBoI3rEgIiIiIiKlMbEgIiIiIqoBS0tLjBs3rr7DeGsxsSAiIiKiBi09PR2TJk1Cq1atoKGhAV1dXbi4uCAsLAyFhYX1HV61Tp8+DZFIJPffuXPn3mgsam90a0RERET0TunYtEd9h4DfsxMUXjcuLg4jRoyAWCzGmDFj0L59e5SUlCAhIQFz587FtWvXEBkZWYfRvh7Tpk1D586dpcpsbGzeaAxMLIiIiIioQcrMzMTIkSPRsmVLnDx5EiYmJpJlU6ZMwZ9//om4uLh6jLDmevbsCU9Pz3qNgV2hiIiIiKhBCg4ORkFBATZv3iyVVFSysbHB9OnTq1z/8ePHmDNnDhwcHKCtrQ1dXV0MGjQIV65ckakbHh4Oe3t7NG7cGE2aNIGTkxNiYmIky/Pz8zFjxgxYWlpCLBajWbNm6NevHy5dulTj/cnPz0dZWVmN69c13rEgIiIiogbp8OHDaNWqFZydnRVaPyMjAwcOHMCIESNgZWWF+/fvIyIiAr169cL169dhamoKANi0aROmTZsGT09PTJ8+HUVFRUhOTsb58+fh4+MDAAgICMDevXsxdepU2NnZITs7GwkJCUhNTUWnTp1eGYuvry8KCgqgqqqKnj17YuXKlXByclJovxTFxIKIiIiIGpy8vDzcuXMHQ4cOVbgNBwcH3LhxAyoq/+sE9Omnn6Jdu3bYvHkzgoKCADwfx2Fvb4/Y2Ngq24qLi8PEiRMREhIiKZs3b94rY1BXV8fHH38MNzc3GBoa4vr16/j+++/Rs2dPJCYmomPHjgrvX20xsSAiIiKiBicvLw8AoKOjo3AbYrFY8nN5eTlycnKgra2Ntm3bSnVh0tfXx+3bt5GUlCQzwPrFOufPn8fdu3cldzpqwtnZWeqOy5AhQ+Dp6YkOHTrgiy++wLFjxxTYM8VwjAURERERNTi6uroAno9LUFRFRQVWrVqF1q1bQywWw9DQEEZGRkhOTkZubq6k3ueffw5tbW106dIFrVu3xpQpU3D27FmptoKDg3H16lWYm5ujS5cuWLRoETIyMhSKy8bGBkOHDsWpU6dQXl6u8P7VFhMLIiIiImpwdHV1YWpqiqtXryrcxrJlyzBr1iy4urpix44d+OWXX3DixAnY29ujoqJCUs/W1hZ//PEHdu3ahR49euCnn35Cjx498PXXX0vqeHl5ISMjA+Hh4TA1NcXKlSthb2+Po0ePKhSbubk5SkpK8PTpU4X3r7ZEgiAIb2xr9Ea8OJ90s9mnarze1bHxdR7LretL6rS9RW6/1Wl79G5aWlp/M2IQETU0/+bnWEyaNAmRkZFITExE9+7dX1nf0tISvXv3xtatWwEA7733HgwMDHDy5EmpemZmZrCxscHp06fltlNSUoLhw4fj2LFjKCgogIaGhkydBw8eoFOnTrC0tERCQu33z9PTE3FxcXj69KnUGJDXiXcsiIiIiKhBmjdvHrS0tDBhwgTcv39fZnl6ejrCwsKqXF9VVRUvf0cfGxuLO3fuSJVlZ2dL/a6urg47OzsIgoDS0lKUl5dLdZ0CgGbNmsHU1BTFxcXV7sPDhw9lyq5cuYJDhw6hf//+byypADh4m4iIiIgaKGtra8TExMDb2xu2trZST95OTExEbGwsxo0bV+X6Hh4eWLx4MXx9feHs7IyUlBRER0ejVatWUvX69+8PY2NjuLi4oHnz5khNTcXatWvh7u4OHR0d5OTkwMzMDJ6ennB0dIS2tjbi4+ORlJQkNUuUPN7e3tDU1ISzszOaNWuG69evIzIyEo0bN8by5cvr4mWqMSYWRERERNRgDRkyBMnJyVi5ciUOHjyIDRs2QCwWo0OHDggJCcHEiROrXPfLL7/E06dPERMTg927d6NTp06Ii4vD/PnzpepNmjQJ0dHRCA0NRUFBAczMzDBt2jQsWLAAANC4cWMEBgbi+PHj2LdvHyoqKmBjY4P169dj8uTJ1cb/0UcfSdrOy8uDkZERhg8fjq+//ho2NjbKv0C1wDEW7yCOsaCGjmMsiIiI3jyOsSAiIiIiIqUxsSAiIiIiIqUxsSAiIiIiIqUxsSAiIiIiIqXValaoCxcuICAgoMrlUVFRcHBwUDqoqsTExEBHRweDBw9+bduoC2lpaTh27BiSkpJw9+5dAM+ffjh48GAMGzYMamr/e9nv3r2LIUOGVNvekiVLMGjQoNcaMxERERGRMhSabnbAgAFwcXGRKTc3N1c6oOrs3LkTJiYmb31isW3bNvz222/o3bs3hg0bhvLyciQkJGDFihU4c+YMwsPDIRKJAABNmjTB4sWL5bYTHByM4uLiGj0JkoiIiIioPimUWLRr1w5ubm51HUu9KisrQ3l5OcRisdJteXt7Y9GiRVJteXt7IygoCEePHkVCQgJ69uwJANDU1JT7WiYnJ6OgoAAffvgh9PX1lY6JiIiIiOh1em1jLI4fPw4/Pz+4urrCxcUFY8eORXy87HMSjh8/jpkzZ8Ld3R3du3fHhx9+iNmzZ+PmzZtS9ZycnJCVlYVLly7ByclJ8q+yq5GTkxMWLVok0/7hw4fh5OSECxcuSMoiIiLg5OSE9PR0hIaGws3NTfK0RAAoKSnBli1b4OXlBWdnZ/Tu3RszZ85EWlpajfb9vffek5ug9OvXD8Dzx8O/yoEDBwA8f+gJEREREdHbTqE7FkVFRcjJyZEqa9SoEbS0tAAA69evx5YtW+Ds7IyAgACoqKjg1KlTmD9/PubNmwcvLy/Jenv27IGenh6GDRsGQ0ND3L59G/v374efnx927NgBCwsLAMDixYsRGhoKfX19jB8/XrJ+kyZNFNkFAEBQUBDEYjFGjRoFkUgEQ0NDlJWV4bPPPkNycjLc3Nzg5eWFgoICSUybNm2CnZ2dQtt78OABAMDAwKDaes+ePUN8fDxMTEzQtWtXhbZFRERERPQmKZRYREREICIiQqqsX79++O6775CWloYtW7bA19cXU6ZMkSwfOXIkZs+ejXXr1sHd3V2ShISHh0NTU1OqLXd3d/j4+CAmJkbySHQ3Nzds2LABBgYGddYNS1tbG+vXr5caTB0dHY2LFy8iPDxcamyDp6cnvL29sXr1akRGRtZ6W8+ePcP27duhra2NXr16VVv3+PHjePbsGUaPHg0VFU7cRURERERvP4USi2HDhqFv375SZU2bNgUAHD16FCKRCO7u7jJ3NVxdXXHmzBmkpKSgW7duACBJKgRBwNOnT1FWVoYmTZqgZcuWuHr1qiLh1ZiPj49UUlEZv6WlJWxtbWXi79q1K+Li4lBUVAQNDY0ab6e8vBxBQUG4c+cOvv32W+jp6VVb/+DBg1BRUXnlbFFERERERG8LhRILCwuLKrvoZGZmQhAEeHp6Vrl+dna25Oe0tDRs3LgRFy9eRGFhoVS9Fi1aKBJejVV2s3pRZmYmiouLZRKnF+Xk5MDY2LhG26ioqMDixYtx5swZBAYGYuDAgdXWz8jIQEpKCrp3717jbRARERHR62dpaYnevXtj69at9R3KW0mhxOJVRCIR1qxZU2U3HmtrawDAvXv34O/vDy0tLfj5+cHS0hIaGhoQiUQICQmRSTQUUV5eXuWyqu462NjYYObMmVWuV9NxHRUVFViyZAni4uIwceJEqbEhVTl48CAAYOjQoTXaBhEREREpJz09HcHBwThx4gTu3r0LdXV1ODg4wMvLC/7+/jLd9t9Gly5dwqJFi5CQkICioiK0atUK/v7+mDZt2huLoc4TC3NzcyQmJsLY2BhWVlbV1j116hSePXuG0NBQODk5SS3Lzc2Furq6VFnlsx/k0dPTQ25urkz5nTt3ahH98/ifPHmCzp07KzW+oTKpOHz4MPz8/DBp0qRXrlNaWoojR46gSZMm6N27t8LbJiIiInpTBiwrre8Q8MuXjRReNy4uDiNGjIBYLMaYMWPQvn17lJSUICEhAXPnzsW1a9cUGl/7Jh0/fhyDBw9Gx44dERQUBG1tbaSnp+P27dtvNI46Tyzc3Nywe/durFu3DitWrICqqqrU8uzsbMl4jMoP7oIgSNXZv38/srOzYWJiIlWuqamJvLw8udu1sLBASkqK1PiHvLw8HDp0qFbxu7u7IywsDNHR0fj0009llr8Yf1UEQcC3336Lw4cPw9fXF5MnT67Rts+cOYMnT55g1KhRMmM/iIiIiKhuZWZmYuTIkWjZsiVOnjwp9dlzypQp+PPPPxEXF1ePEb5aXl4exowZA3d3d+zdu7deJ/6p80+v9vb28Pf3R2RkJHx8fNC3b18YGRnh0aNHSE1NxdmzZ3Hu3DkAgIuLC8LDw7Fw4UJ4eXlBR0cHV65cQWJiIszMzGS6MTk4OODgwYPYsGEDrKysIBKJ4OrqCk1NTXh5eSEoKAgBAQFwc3NDfn4+Dhw4ABMTE6kxHa/yySef4Pz58wgLC0NSUhI6d+4MLS0t3Lt3D0lJSVBXV5eZEetlYWFhOHToENq0aQMrKyscOXJEarmZmRk6dOggs15lEsRnVxARERG9fsHBwSgoKMDmzZtlvtAGnnePnz59epXrP378GMuWLcMvv/yCzMxMqKiowMXFBcuXL4ejo6NU3fDwcGzcuBGZmZkQi8WwtrbGrFmz4OPjAwDIz89HUFAQDhw4gKysLOjp6cHR0RErVqxAp06dqowhJiYG9+/fx9KlS6GiooKnT59CU1OzXhKM1/K1uL+/P+zs7LBr1y7s3LkThYWFMDAwgLW1NebMmSOpZ2ZmhjVr1mDdunWIioqCiooKHB0dERERgeDgYGRlZUm1GxgYiNzcXMTGxiI/Px+CIODQoUPQ1NTEoEGD8PDhQ+zZswerVq1CixYtMGHCBKioqNRqdik1NTWsXr0ae/fuxZEjRyRJhJGREezt7eHh4fHKNq5fvw4AuHHjBhYuXCiz3MPDQyaxuHfvHs6dO4cOHTq8sgsZERERESnv8OHDaNWqFZydnRVaPyMjAwcOHMCIESNgZWWF+/fvIyIiAr169cL169dhamoKANi0aROmTZsGT09PTJ8+HUVFRUhOTsb58+cliUVAQAD27t2LqVOnws7ODtnZ2UhISEBqamq1iUV8fDx0dXVx584dfPTRR7hx4wa0tLTw6aefYtWqVbWayVRZIuHlfkj0r9exaQ/Jz81mn6rxelfHyj4ZXVm3ri+p0/YWuf1Wp+3Ru2lpaVl9h0BE1GD8W8dY5OXlQU9PD0OHDsWBAwdqtM7Ls0IVFxejUaNGUncHbt26hXbt2uGrr75CUFAQgOe9Uf78889qv+zW19fH6NGjsXbt2lrth6OjI/78808AgJ+fH3r37o3Tp08jPDwcI0eOxM6dO2vVnjL49DUiIiIianAqx+3q6Ogo3IZYLJYkFeXl5cjOzoa2tjbatm2LS5cuSerp6+vj9u3bSEpKqrItfX19nD9/Hnfv3q1VDAUFBXj27BnGjBmDNWvWYPjw4VizZg0mTZqEXbt24ebNm4rtnAKYWBARERFRg6Orqwvg+dgGRVVUVGDVqlVo3bo1xGIxDA0NYWRkhOTkZKnZSj///HNoa2ujS5cuaN26NaZMmYKzZ89KtRUcHIyrV6/C3NwcXbp0waJFi5CRkfHKGCqnwv3kk0+kyiu7WP36668K719tMbEgIiIiogZHV1cXpqamtRqL+7Jly5Zh1qxZcHV1xY4dO/DLL7/gxIkTsLe3R0VFhaSera0t/vjjD+zatQs9evTATz/9hB49euDrr7+W1PHy8kJGRgbCw8NhamqKlStXwt7eHkePHq02hspxHM2bN5cqb9asGQDgyZMnCu9fbTGxICIiIqIGycPDA+np6Qp/q79371706dMHmzdvxsiRI9G/f3/07dsXOTk5MnW1tLTg7e2NqKgo/P3333B3d8fSpUtRVFQkqWNiYoLAwEAcOHAAmZmZaNq0KZYuXVptDO+//z4A2We3VXapMjIyUmjfFMHEgoiIiIgapHnz5kFLSwsTJkzA/fv3ZZanp6cjLCysyvVVVVVlnscWGxsr8yH/5UcfqKurw87ODoIgoLS0FOXl5TIPem7WrBlMTU1RXFxc7T54eXkBADZv3ixV/sMPP0BNTe2NPnSZT2EjIiIiogbJ2toaMTEx8Pb2hq2trdSTtxMTExEbG4tx48ZVub6HhwcWL14MX19fODs7IyUlBdHR0WjVqpVUvf79+8PY2BguLi5o3rw5UlNTsXbtWri7u0NHRwc5OTkwMzODp6cnHB0doa2tjfj4eCQlJSEkJKTafejYsSPGjx+PLVu2oKysDL169cLp06cRGxuLL774QtJV6k3gdLPvoMjISPj6+qJRI8Ufb09ERERUE//W6WZfdPPmTaxcuRInTpzA3bt3IRaL0aFDB4wcORITJ06EWCwGIH+62a+++goxMTHIyclBp06d8P3332P+/PkAgNOnTwN4/tksOjoa165dQ0FBAczMzDB8+HAsWLAAurq6KCkpwYIFC3D8+HFkZGSgoqICNjY2mDRpEiZPnvzK+EtLS7Fs2TJERUXh7t27aNmyJaZMmYIZM2Yo9brUFhOLdxATCyIiIiJ60zjGgoiIiIiIlMbEgoiIiIiIlMbEgoiIiIiIlMbEgoiIiIiIlMbEgoiIiIiIlMbEgoiIiIiIlMbEgoiIiIiIlMbEgoiIiIiIlMbEgoiIiIiIlMbEgoiIiIiIlMbEgoiIiIiIlCYSBEGo7yCobnVs2kNuebPZp95wJDV3dWy8wusGGy+rw0jenOsav9Z3CO+kpaVl9R0CERG9oywtLdG7d29s3bq1vkN5K/GOBRERERE1aOnp6Zg0aRJatWoFDQ0N6OrqwsXFBWFhYSgsLKzv8F6puLgYn3/+OUxNTaGpqYmuXbvixIkTbzwOtTe+RSIiIiKit0RcXBxGjBgBsViMMWPGoH379igpKUFCQgLmzp2La9euITIysr7DrNa4ceOwd+9ezJgxA61bt8bWrVvh5uaGU6dOoUcP+T1ZXgcmFkRERESksBZ3jtZ3CLjTYpBC62VmZmLkyJFo2bIlTp48CRMTE8myKVOm4M8//0RcXFxdhfla/Pbbb9i1axdWrlyJOXPmAIAkQZo3bx4SExPfWCzsCkVEREREDVJwcDAKCgqwefNmqaSiko2NDaZPn17l+o8fP8acOXPg4OAAbW1t6OrqYtCgQbhy5YpM3fDwcNjb26Nx48Zo0qQJnJycEBMTI1men5+PGTNmwNLSEmKxGM2aNUO/fv1w6dKlavdh7969UFVVhb+/v6RMQ0MDfn5++PXXX/HPP//U5KWoE7xjQUREREQN0uHDh9GqVSs4OzsrtH5GRgYOHDiAESNGwMrKCvfv30dERAR69eqF69evw9TUFACwadMmTJs2DZ6enpg+fTqKioqQnJyM8+fPw8fHBwAQEBCAvXv3YurUqbCzs0N2djYSEhKQmpqKTp06VRnD77//jjZt2kBXV1eqvEuXLgCAy5cvw9zcXKH9qy0mFkRERETU4OTl5eHOnTsYOnSowm04ODjgxo0bUFH5XyegTz/9FO3atcPmzZsRFBQE4Pk4Dnt7e8TGxlbZVlxcHCZOnIiQkBBJ2bx5814ZQ1ZWlty7LZVld+/erfH+KItdoYiIiIiowcnLywMA6OjoKNyGWCyWJBXl5eXIzs6GtrY22rZtK9WFSV9fH7dv30ZSUlKVbenr6+P8+fO1TgQKCwshFotlyjU0NCTL35Ra3bG4cOECAgICqlweFRUFBwcHpYOqSkxMDHR0dDB48ODXto26kJaWhmPHjiEpKUlycpibm2Pw4MEYNmwY1NSkX/bw8HD8/vvv+Oeff1BQUAADAwO0bt0ao0ePhpOTU33sAhEREdE7rbLrUH5+vsJtVFRUICwsDOvXr0dmZibKy8sly5o2bSr5+fPPP0d8fDy6dOkCGxsb9O/fHz4+PnBxcZHUCQ4OxtixY2Fubo73338fbm5uGDNmDFq1alVtDJqamiguLpYpLyoqkix/UxTqCjVgwACpF6LS6+6/tXPnTpiYmLz1icW2bdvw22+/oXfv3hg2bBjKy8uRkJCAFStW4MyZMwgPD4dIJJLUT0lJgY2NDT744APo6OggOzsbR48eRUBAAL755hu4u7vX494QERERvXt0dXVhamqKq1evKtzGsmXLEBQUhPHjx2PJkiUwMDCAiooKZsyYgYqKCkk9W1tb/PHHH/j5559x7Ngx/PTTT1i/fj0WLlyIb775BgDg5eWFnj17Yv/+/Th+/DhWrlyJFStWYN++fRg0qOpZr0xMTHDnzh2Z8qysLACQjPN4ExRKLNq1awc3N7e6jqVelZWVoby8XO6tpNry9vbGokWLpNry9vZGUFAQjh49ioSEBPTs2VOyTN7cyCNHjsRHH32ErVu3MrEgIiIieg08PDwQGRmJX3/9Fd27d6/1+nv37kWfPn2wefNmqfKcnBwYGhpKlWlpacHb2xve3t4oKSnB8OHDsXTpUnzxxReSbksmJiYIDAxEYGAgHjx4gE6dOmHp0qXVJhbvvfceTp06hby8PKkB3OfPn5csf1Ne2xiL48ePw8/PD66urnBxccHYsWMRHx8vt97MmTPh7u6O7t2748MPP8Ts2bNx8+ZNqXpOTk7IysrCpUuX4OTkJPlX2dXIyckJixYtkmn/8OHDcHJywoULFyRlERERcHJyQnp6OkJDQ+Hm5gZnZ2ekpKQAAEpKSrBlyxZ4eXnB2dkZvXv3xsyZM5GWllajfX/vvffkJij9+vUD8Pzpjq/SuHFj6OnpSfr/EREREVHdmjdvHrS0tDBhwgTcv39fZnl6ejrCwsKqXF9VVRWCIEiVxcbGytxByM7OlvpdXV0ddnZ2EAQBpaWlKC8vR25urlSdZs2awdTUVG43pxd5enqivLxc6ovq4uJiREVFoWvXrm9sRihAwTsWRUVFyMnJkSpr1KgRtLS0AADr16/Hli1b4OzsjICAAKioqODUqVOYP38+5s2bBy8vL8l6e/bsgZ6eHoYNGwZDQ0Pcvn0b+/fvh5+fH3bs2AELCwsAwOLFixEaGgp9fX2MHz9esn6TJk0U2QUAQFBQEMRiMUaNGgWRSARDQ0OUlZXhs88+Q3JyMtzc3ODl5YWCggJJTJs2bYKdnZ1C23vw4AEAwMDAQO7ynJwcVFRU4NGjR9i/fz8yMzMxZMgQhfePiIiIiKpmbW2NmJgYeHt7w9bWVurJ24mJiYiNjcW4ceOqXN/DwwOLFy+Gr6+v5Evq6OhomXER/fv3h7GxMVxcXNC8eXOkpqZi7dq1cHd3h46ODnJycmBmZgZPT084OjpCW1sb8fHxSEpKkpolSp6uXbtixIgR+OKLL/DgwQPY2Nhg27ZtuHXrlsydlNdNocQiIiICERERUmX9+vXDd999h7S0NGzZsgW+vr6YMmWKZPnIkSMxe/ZsrFu3Du7u7pIkJDw8XGZQibu7O3x8fBATE4P58+cDANzc3LBhwwYYGBjUWTcsbW1trF+/XmowdXR0NC5evIjw8HCpW2Kenp7w9vbG6tWrFXqs+7Nnz7B9+3Zoa2ujV69ecpf37dtX8rtYLMawYcMwa9asWm+LiIiIiGpmyJAhSE5OxsqVK3Hw4EFs2LABYrEYHTp0QEhICCZOnFjlul9++SWePn2KmJgY7N69G506dUJcXJzk82ulSZMmITo6GqGhoSgoKICZmRmmTZuGBQsWAHjeUyUwMBDHjx/Hvn37UFFRARsbG6xfvx6TJ09+5T78+OOPCAoKwvbt2/HkyRN06NABP//8M1xdXZV7cWpJocRi2LBhUh+Cgf+NfD969ChEIhHc3d1l7mq4urrizJkzSElJQbdu3QD8b6S6IAh4+vQpysrK0KRJE7Rs2VKpwTQ14ePjIzND09GjR2FpaQlbW1uZ+Lt27Yq4uDgUFRVJ+sLVRHl5OYKCgnDnzh18++230NPTk6kjFouxbt06lJeXIysrC8eOHUNhYSGKiore6Gh+IiIiotq406Lq/v//Fq1bt67RF8e3bt2S+l0sFuP777/H999/L1V++vRpqd/9/f2lnoz9MnV1dQQHByM4OLjGMb9IQ0MDK1euxMqVKxVav64olFhYWFiga9eucpdlZmZCEAR4enpWuf6L/czS0tKwceNGXLx4UWae3RYtWigSXo1VdrN6UWZmJoqLi2USpxfl5OTA2Ni4RtuoqKjA4sWLcebMGQQGBmLgwIFy66mqqkq9ph999BEmTZqEgIAAREdHyyRARERERERvk9fyaVUkEmHNmjVSTyF8kbW1NQDg3r178Pf3h5aWFvz8/GBpaQkNDQ2IRCKEhITUyQM9XpxP+GVV3XWwsbHBzJkzq1yvpuM6KioqsGTJEsmTFF8cG/IqqqqqGDhwIJYvX45Lly5JHstORERERPQ2qvPEwtzcHImJiTA2NoaVlVW1dU+dOoVnz54hNDRU5kFwubm5UFdXlyp78dkPL9PT05MZTQ9A7ry+1TE3N8eTJ0/QuXPnKhOjmqhMKg4fPgw/Pz9MmjSp1m1UzgLAmaGIiIiI6G1X59PNVg6srhwv8LIXu0FVfnB/eZqu/fv3y0zLBTwfj1HVh2wLCwukpKRInjIIPP9AfujQoVrF7+7ujuzsbERHR8tdLi+ulwmCgG+//RaHDx+Gr69vtYNu8vLyUFpaKlNeWFiIgwcPQkVFBfb29jXfASIiIiKielDndyzs7e3h7++PyMhI+Pj4oG/fvjAyMsKjR4+QmpqKs2fP4ty5cwAAFxcXhIeHY+HChfDy8oKOjg6uXLmCxMREmJmZySQmDg4OktH6VlZWEIlEcHV1haamJry8vBAUFISAgAC4ubkhPz8fBw4cgImJSY2SgUqffPIJzp8/j7CwMCQlJaFz587Q0tLCvXv3kJSUBHV1dZkZsV4WFhaGQ4cOoU2bNrCyssKRI0eklpuZmaFDhw4AgEuXLmHZsmX44IMPYGZmBi0tLdy9exdHjhzB/fv3MXHiRJiYmNQ4fiIiIiKi+vBaxlj4+/vDzs4Ou3btws6dO1FYWAgDAwNYW1tjzpw5knpmZmZYs2YN1q1bh6ioKKioqMDR0REREREIDg6WPIq8UmBgIHJzcxEbG4v8/HwIgoBDhw5BU1MTgwYNwsOHD7Fnzx6sWrUKLVq0wIQJE6CiolKr2aXU1NSwevVq7N27F0eOHJEkEUZGRrC3t4eHh8cr27h+/ToA4MaNG1i4cKHMcg8PD0liYWNjg549e+LixYs4evQoioqKoK+vDzs7O3zxxRfo0aNHjWMnIiIiIqovIuHlfkj0r9exqfxkpNnsU284kpq7Olb2qew1FWy8rA4jeXOua/xa3yG8k5aWltV3CERERA1SnY+xICIiIiKihoeJBRERERERKY2JBRERERERKY2JBRERERERKY2JBRERERERKY2JBRERERFRDVhaWmLcuHH1HcZbi4kFERERETVo6enpmDRpElq1agUNDQ3o6urCxcUFYWFhKCwsrO/wqnXt2jWMGDECrVq1QuPGjWFoaAhXV1ccPnz4jcfyWh6QR/Vr8ndj4Ovri0aNGtV3KLUwqJ7WrUel9R0AERGR8qLLe9Z3CBil+n8KrxsXF4cRI0ZALBZjzJgxaN++PUpKSpCQkIC5c+fi2rVriIyMrMNo69Zff/2F/Px8jB07Fqampnj27Bl++uknDBkyBBEREfD3939jsTCxICIiIqIGKTMzEyNHjkTLli1x8uRJmJiYSJZNmTIFf/75J+Li4uoxwldzc3ODm5ubVNnUqVPx/vvvIzQ09I0mFuwKRUREREQNUnBwMAoKCrB582appKKSjY0Npk+fXuX6jx8/xpw5c+Dg4ABtbW3o6upi0KBBuHLlikzd8PBw2Nvbo3HjxmjSpAmcnJwQExMjWZ6fn48ZM2bA0tISYrEYzZo1Q79+/XDp0qVa75eqqirMzc2Rk5NT63WVwTsWRERERNQgHT58GK1atYKzs7NC62dkZODAgQMYMWIErKyscP/+fURERKBXr164fv06TE1NAQCbNm3CtGnT4OnpienTp6OoqAjJyck4f/48fHx8AAABAQHYu3cvpk6dCjs7O2RnZyMhIQGpqano1KnTK2N5+vQpCgsLkZubi0OHDuHo0aPw9vZWaL8UxcSCiIiIiBqcvLw83LlzB0OHDlW4DQcHB9y4cQMqKv/rBPTpp5+iXbt22Lx5M4KCggA8H8dhb2+P2NjYKtuKi4vDxIkTERISIimbN29ejWOZPXs2IiIiAAAqKioYPnw41q5dW9tdUgq7QhERERFRg5OXlwcA0NHRUbgNsVgsSSrKy8uRnZ0NbW1ttG3bVqoLk76+Pm7fvo2kpKQq29LX18f58+dx9+5dhWKZMWMGTpw4gW3btmHQoEEoLy9HSUmJQm0piokFERERETU4urq6AJ6PbVBURUUFVq1ahdatW0MsFsPQ0BBGRkZITk5Gbm6upN7nn38ObW1tdOnSBa1bt8aUKVNw9uxZqbaCg4Nx9epVmJubo0uXLli0aBEyMjJqHEu7du3Qt29fjBkzBj///DMKCgowePBgCIKg8P7VFhMLIiIiImpwdHV1YWpqiqtXryrcxrJlyzBr1iy4urpix44d+OWXX3DixAnY29ujoqJCUs/W1hZ//PEHdu3ahR49euCnn35Cjx498PXXX0vqeHl5ISMjA+Hh4TA1NcXKlSthb2+Po0ePKhSbp6cnkpKScOPGDYX3r7aYWBARERFRg+Th4YH09HT8+uuvCq2/d+9e9OnTB5s3b8bIkSPRv39/9O3bV+5sTFpaWvD29kZUVBT+/vtvuLu7Y+nSpSgqKpLUMTExQWBgIA4cOIDMzEw0bdoUS5cuVSi2ygf7vXjn5HVjYkFEREREDdK8efOgpaWFCRMm4P79+zLL09PTERYWVuX6qqqqMl2NYmNjcefOHamy7Oxsqd/V1dVhZ2cHQRBQWlqK8vJymQSgWbNmMDU1RXFxcbX78ODBA5my0tJS/Pjjj9DU1ISdnV2169clzgpFRERERA2StbU1YmJi4O3tDVtbW6knbycmJiI2Nhbjxo2rcn0PDw8sXrwYvr6+cHZ2RkpKCqKjo9GqVSupev3794exsTFcXFzQvHlzpKamYu3atXB3d4eOjg5ycnJgZmYGT09PODo6QltbG/Hx8UhKSpKaJUqeSZMmIS8vD66urmjRogXu3buH6OhopKWlISQkBNra2nXxUtUIEwsiIiIiarCGDBmC5ORkrFy5EgcPHsSGDRsgFovRoUMHhISEYOLEiVWu++WXX+Lp06eIiYnB7t270alTJ8TFxWH+/PlS9SZNmoTo6GiEhoaioKAAZmZmmDZtGhYsWAAAaNy4MQIDA3H8+HHs27cPFRUVsLGxwfr16zF58uRq4/f29sbmzZuxYcMGZGdnQ0dHB++//z5WrFiBIUOGKP8C1YJIeJNDxemNGLCsVKn1r46Nf2WdYONlkp+9TpYrtT36d1vk9tsb29bS0rI3ti0iIiKqHY6xICIiIiIipTGxICIiIiIipTGxICIiIiIipTGxICIiIiIipTGxICIiIiIipTGxICIiIiIipTGxICIiIiIipTGxICIiIiIipdXqydsXLlxAQEBAlcujoqLg4OCgdFBViYmJgY6ODgYPHvzatlEXnj17hh07diA1NRV//PEHHjx4gE6dOiEyMlKmbllZGYKDg3H9+nVkZWXh2bNnMDIygr29PcaOHYt27drVwx4QEREREdVOrRKLSgMGDICLi4tMubm5udIBVWfnzp0wMTF56xOLnJwcREZGomnTpmjXrh2ys7OrrFtaWorU1FQ4OjrCzc0NjRs3xv3793Ho0CGMGzcO4eHh6Ny58xuMnoiIiIio9hRKLNq1awc3N7e6jqVelZWVoby8HGKxWOm2DA0NERcXh+bNmwMAevbsWWVdTU1NbN++Xab8448/hru7O7Zv387EgoiIiIjeeq9tjMXx48fh5+cHV1dXuLi4YOzYsYiPj5dbb+bMmXB3d0f37t3x4YcfYvbs2bh586ZUPScnJ2RlZeHSpUtwcnKS/Lt7965k+aJFi2TaP3z4MJycnHDhwgVJWUREBJycnJCeno7Q0FC4ubnB2dkZKSkpAICSkhJs2bIFXl5ecHZ2Ru/evTFz5kykpaXVaN/V1dUlSYWimjRpArFYjPz8fKXaISIiIqK6YWlpiXHjxtV3GG8the5YFBUVIScnR6qsUaNG0NLSAgCsX78eW7ZsgbOzMwICAqCiooJTp05h/vz5mDdvHry8vCTr7dmzB3p6ehg2bBgMDQ1x+/Zt7N+/H35+ftixYwcsLCwAAIsXL0ZoaCj09fUxfvx4yfpNmjRRZBcAAEFBQRCLxRg1ahREIhEMDQ1RVlaGzz77DMnJyXBzc4OXlxcKCgokMW3atAl2dnYKb7Mq5eXlyM/PR1lZGe7fv48dO3bg2bNncrucEREREVHdSU9PR3BwME6cOIG7d+9CXV0dDg4O8PLygr+/PzQ1Nes7xBpbunQpFixYAHt7e1y9evWNbluhxCIiIgIRERFSZf369cN3332HtLQ0bNmyBb6+vpgyZYpk+ciRIzF79mysW7cO7u7ukiQkPDxc5mC5u7vDx8cHMTExmD9/PgDAzc0NGzZsgIGBQZ11w9LW1sb69euhpva/lyE6OhoXL15EeHg4unfvLin39PSEt7c3Vq9eLXcQtrIyMzMxcuRIqdh8fX2ZFRMREdFbrfSEc32HgEb9EhVeNy4uDiNGjIBYLMaYMWPQvn17lJSUICEhAXPnzsW1a9dey2e/1+H27dtYtmyZ5HP2m6ZQYjFs2DD07dtXqqxp06YAgKNHj0IkEsHd3V3mroarqyvOnDmDlJQUdOvWDQAkSYUgCHj69CnKysrQpEkTtGzZ8rVnWT4+PlJJRWX8lpaWsLW1lYm/a9euiIuLQ1FRETQ0NOo0lhYtWmDdunUoLS3F7du3ceTIERQUFKC0tFQmRiIiIiJSXuUXuy1btsTJkydhYmIiWTZlyhT8+eefiIuLq8cIa2fOnDno1q0bysvL8ejRoze+fYU+sVpYWKBr165yl2VmZkIQBHh6ela5/ouzJKWlpWHjxo24ePEiCgsLpeq1aNFCkfBqrLKb1YsyMzNRXFwskzi9KCcnB8bGxnUai6amptRrOmTIEIwePRrz5s1DeHh4nW6LiIiIiIDg4GAUFBRg8+bNUklFJRsbG0yfPr3K9R8/foxly5bhl19+QWZmJlRUVODi4oLly5fD0dFRqm54eDg2btyIzMxMiMViWFtbY9asWfDx8QEA5OfnIygoCAcOHEBWVhb09PTg6OiIFStWoFOnTq/cl//+97/Yu3cvfv/9d3z22We1fCXqxmv5KlwkEmHNmjVQUZE/Ntza2hoAcO/ePfj7+0NLSwt+fn6wtLSEhoYGRCIRQkJCZBINRZSXl1e5rKq7DjY2Npg5c2aV6ykzrqOmGjdujD59+mDbtm24ffs2zMzMXvs2iYiIiBqSw4cPo1WrVnB2Vqw7V0ZGBg4cOIARI0bAysoK9+/fR0REBHr16oXr16/D1NQUALBp0yZMmzYNnp6emD59OoqKipCcnIzz589LEouAgADs3bsXU6dOhZ2dHbKzs5GQkIDU1NRXJhbl5eX47LPPMGHChNf6TLlXqfPEwtzcHImJiTA2NoaVlVW1dU+dOoVnz54hNDQUTk5OUstyc3Ohrq4uVSYSiapsS09PD7m5uTLld+7cqUX0z+N/8uQJOnfuXGVi9KYUFxcDeP5aMLEgIiIiqjt5eXm4c+cOhg4dqnAbDg4OuHHjhtRnxk8//RTt2rXD5s2bERQUBOD5OA57e3vExsZW2VZcXBwmTpyIkJAQSdm8efNqFMfGjRvx119/yZ2B9U2q80/OlQOr161bJ/duwYvdoCoPgiAIUnX2798v96FympqayMvLk7tdCwsLpKSkoKioSFKWl5eHQ4cO1Sp+d3d3ZGdnIzo6Wu7y6h52p4gnT56goqJCpvzRo0eIj49H48aNJXd4iIiIiKhuVH6m1NHRUbgNsVgs+TxbXl6O7OxsaGtro23btrh06ZKknr6+Pm7fvo2kpKQq29LX18f58+clj1KoqezsbCxcuBBBQUEwMjJSbEfqSJ3fsbC3t4e/vz8iIyPh4+ODvn37wsjICI8ePUJqairOnj2Lc+fOAQBcXFwQHh6OhQsXwsvLCzo6Orhy5QoSExNhZmYmk5g4ODjg4MGD2LBhA6ysrCASieDq6gpNTU14eXkhKCgIAQEBcHNzQ35+Pg4cOAATE5NaJQOffPIJzp8/j7CwMCQlJaFz587Q0tLCvXv3kJSUBHV1dZkZseTZvXu35BkUZWVluHfvHn744QcAQJs2beDq6grg+WDxnTt3onfv3mjRogXU1NTw999/Iy4uDnl5eViwYEGdDxQnIiIiauh0dXUBQKlnhlVUVCAsLAzr169HZmam1GfXyomNAODzzz9HfHw8unTpAhsbG/Tv3x8+Pj5SjxUIDg7G2LFjYW5ujvfffx9ubm4YM2YMWrVqVW0MCxYsgIGBQb2Nq3jRaxlj4e/vDzs7O+zatQs7d+5EYWEhDAwMYG1tjTlz5kjqmZmZYc2aNVi3bh2ioqKgoqICR0dHREREIDg4GFlZWVLtBgYGIjc3F7GxscjPz4cgCDh06BA0NTUxaNAgPHz4EHv27MGqVavQokULTJgwASoqKrWaXUpNTQ2rV6/G3r17ceTIEUkSYWRkBHt7e3h4eNSonR07dkjFf/fuXWzcuBEA4OHhIUksOnbsiNTUVCQkJODRo0coLS1F06ZN0aVLF4wcOVJm4A8RERERKU9XVxempqZKzUK6bNkyBAUFYfz48ViyZAkMDAygoqKCGTNmSPVIsbW1xR9//IGff/4Zx44dw08//YT169dj4cKF+OabbwAAXl5e6NmzJ/bv34/jx49j5cqVWLFiBfbt24dBgwbJ3f7NmzcRGRmJ1atXS93pKCoqQmlpKW7dugVdXV0YGBgovI+1IRJe7odE/3oDlpUqtf7Vsa/unxdsvEzys9fJqgfI07tvkdtvb2xbS0vL3ti2iIioZv7Nz7GYNGkSIiMjkZiYKPX8sqpYWlqid+/e2Lp1KwDgvffeg4GBAU6ePClVz8zMDDY2Njh9+rTcdkpKSjB8+HAcO3YMBQUFcnunPHjwAJ06dYKlpSUSEhLktnP69Gn06dOn2pinT5+O1atXv3Lf6kL9jk4mIiIiIqon8+bNg5aWFiZMmID79+/LLE9PT0dYWFiV66uqqsqMFY6NjZWZPOjlbvnq6uqws7ODIAgoLS1FeXm5zCREzZo1g6mpqWQyH3nat2+P/fv3y/yzt7eHhYUF9u/fDz8/vyrXr2t88hoRERERNUjW1taIiYmBt7c3bG1tpZ68nZiYiNjYWIwbN67K9T08PLB48WL4+vrC2dkZKSkpiI6OlhkX0b9/fxgbG8PFxQXNmzdHamoq1q5dC3d3d+jo6CAnJwdmZmbw9PSEo6MjtLW1ER8fj6SkJKlZol5maGiIjz76SKa88g6FvGWvExMLIiIiImqwhgwZguTkZKxcuVIySZBYLEaHDh0QEhKCiRMnVrnul19+iadPnyImJga7d+9Gp06dEBcXh/nz50vVmzRpEqKjoxEaGoqCggKYmZlh2rRpWLBgAYDnzy8LDAzE8ePHsW/fPlRUVMDGxgbr16/H5MmTX+v+1yWOsXgHcYwFvUkcY0FEREQAx1gQEREREVEdYGJBRERERERKY1eod1BkZCR8fX3RqFGj+g6FiIiIiBoI3rEgIiIiIiKlMbEgIiIiIiKlMbEgIiIiIiKlMbEgIiIiIiKlMbEgIiIiIiKlMbEgIiIiIiKlMbEgIiIiIiKlMbEgIiIiIiKlMbEgIiIiIqoBS0tLjBs3rr7DeGsxsSAiIiKiBi09PR2TJk1Cq1atoKGhAV1dXbi4uCAsLAyFhYX1HV61CgoK8PXXX2PgwIEwMDCASCTC1q1b6yUWtXrZKhERERHRWyAuLg4jRoyAWCzGmDFj0L59e5SUlCAhIQFz587FtWvXEBkZWd9hVunRo0dYvHgxLCws4OjoiNOnT9dbLEwsiIiIiEhhd/pr1XcIaHH8qULrZWZmYuTIkWjZsiVOnjwJExMTybIpU6bgzz//RFxcXF2F+VqYmJggKysLxsbGuHDhAjp37lxvsTCxeAf99MgXP60EgNL6DgVXx8bXdwj0gmDjZfUdQpW8TpZLfl7k9pvk56WlZfURDhERNQDBwcEoKCjA5s2bpZKKSjY2Npg+fXqV6z9+/BjLli3DL7/8gszMTKioqMDFxQXLly+Ho6OjVN3w8HBs3LgRmZmZEIvFsLa2xqxZs+Dj4wMAyM/PR1BQEA4cOICsrCzo6enB0dERK1asQKdOnaqMQSwWw9jYWMFXoG4xsSAiIiKiBunw4cNo1aoVnJ2dFVo/IyMDBw4cwIgRI2BlZYX79+8jIiICvXr1wvXr12FqagoA2LRpE6ZNmwZPT09Mnz4dRUVFSE5Oxvnz5yWJRUBAAPbu3YupU6fCzs4O2dnZSEhIQGpqarWJxduEiQURERERNTh5eXm4c+cOhg4dqnAbDg4OuHHjBlRU/jcf0qeffop27dph8+bNCAoKAvB8HIe9vT1iY2OrbCsuLg4TJ05ESEiIpGzevHkKx1YfOCsUERERETU4eXl5AAAdHR2F2xCLxZKkory8HNnZ2dDW1kbbtm1x6dIlST19fX3cvn0bSUlJVbalr6+P8+fP4+7duwrHU9+YWBARERFRg6Orqwvg+dgGRVVUVGDVqlVo3bo1xGIxDA0NYWRkhOTkZOTm5krqff7559DW1kaXLl3QunVrTJkyBWfPnpVqKzg4GFevXoW5uTm6dOmCRYsWISMjQ+HY6gMTCyIiIiJqcHR1dWFqaoqrV68q3MayZcswa9YsuLq6YseOHfjll19w4sQJ2Nvbo6KiQlLP1tYWf/zxB3bt2oUePXrgp59+Qo8ePfD1119L6nh5eSEjIwPh4eEwNTXFypUrYW9vj6NHjyq1n28SEwsiIiIiapA8PDyQnp6OX3/9VaH19+7diz59+mDz5s0YOXIk+vfvj759+yInJ0emrpaWFry9vREVFYW///4b7u7uWLp0KYqKiiR1TExMEBgYiAMHDiAzMxNNmzbF0qVLFd29N46JBRERERE1SPPmzYOWlhYmTJiA+/fvyyxPT09HWFhYleurqqpCEASpstjYWNy5c0eqLDs7W+p3dXV12NnZQRAElJaWory8XKrrFAA0a9YMpqamKC4uru1u1ZtazQp14cIFBAQEVLk8KioKDg4OSgdVlZiYGOjo6GDw4MGvbRt1ISUlBdu3b8eNGzfw+PFjAICxsTH69u0LHx8faGtrS+revXsXQ4YMqba9JUuWYNCgQa81ZiIiIqKGxtraGjExMfD29oatra3Uk7cTExMRGxuLcePGVbm+h4cHFi9eDF9fXzg7OyMlJQXR0dFo1aqVVL3+/fvD2NgYLi4uaN68OVJTU7F27Vq4u7tDR0cHOTk5MDMzg6enJxwdHaGtrY34+HgkJSVJzRJVlbVr1yInJ0cy8Pvw4cO4ffs2AOCzzz6Dnp6e4i9SLSg03eyAAQPg4uIiU25ubq50QNXZuXMnTExM3vrE4q+//kJRUREGDRoEQ0NDCIKAa9euYcuWLfjPf/6Dbdu2QUNDAwDQpEkTLF68WG47wcHBKC4uRvfu3d9k+EREREQNxpAhQ5CcnIyVK1fi4MGD2LBhA8RiMTp06ICQkBBMnDixynW//PJLPH36FDExMdi9ezc6deqEuLg4zJ8/X6repEmTEB0djdDQUBQUFMDMzAzTpk3DggULAACNGzdGYGAgjh8/jn379qGiogI2NjZYv349Jk+e/Mp9+P777/HXX39Jft+3bx/27dsHABg9evQbSyxEwsv3b6pRecdi+vTp+PTTT19nXHINHjwYJiYmiIyMrPO2y8rKUF5eDrFYXOdtV/rxxx+xZs0afPfdd+jXr1+1dZOTkzF+/Hh8+OGHWLFiRa22M2BZ/T9xuxKfvP124ZO3iYiI6HV5bWMsjh8/Dj8/P7i6usLFxQVjx45FfLzsh8zjx49j5syZcHd3R/fu3fHhhx9i9uzZuHnzplQ9JycnZGVl4dKlS3BycpL8q7zl4+TkhEWLFsm0f/jwYTg5OeHChQuSsoiICDg5OSE9PR2hoaFwc3OT3L4CgJKSEmzZsgVeXl5wdnZG7969MXPmTKSlpSn1mlQ+Kr5y3uTqHDhwAADw0UcfKbVNIiIiIqI3QaGuUEVFRTKj3Rs1agQtLS0AwPr167FlyxY4OzsjICAAKioqOHXqFObPn4958+bBy8tLst6ePXugp6eHYcOGwdDQELdv38b+/fvh5+eHHTt2wMLCAgCwePFihIaGQl9fH+PHj5es36RJE0V2AQAQFBQEsViMUaNGQSQSwdDQEGVlZfjss8+QnJwMNzc3eHl5oaCgQBLTpk2bYGdnV+PXqfJfamoqwsPD0ahRI3Tt2rXa9Z49e4b4+HiYmJi8si4RERER0dtAocQiIiICERERUmX9+vXDd999h7S0NGzZsgW+vr6YMmWKZPnIkSMxe/ZsrFu3Du7u7pIkJDw8HJqamlJtubu7w8fHBzExMZI+am5ubtiwYQMMDAzg5uamSNgytLW1sX79eqip/e9liI6OxsWLFxEeHi41tsHT0xPe3t5YvXp1jbtibdy4ETt27JD83qpVK6xatQpmZmbVrnf8+HE8e/YMo0ePlnpEPBERERHR20qhxGLYsGHo27evVFnTpk0BAEePHoVIJIK7u7vMXQ1XV1ecOXMGKSkp6NatGwBIkgpBEPD06VOUlZWhSZMmaNmypVIPLKkJHx8fqaSiMn5LS0vY2trKxN+1a1fExcWhqKhIMvi6OsOHD0f37t2Rn5+PlJQUXLx4Ue68xi87ePAgVFRUXjlbFBERERHR20KhxMLCwqLKLjqZmZkQBAGenp5Vrv/iXL5paWnYuHEjLl68iMLCQql6LVq0UCS8GqvsZvWizMxMFBcXyyROL8rJyYGxsXGN2q/cRt++ffHrr7/is88+AwAMHDhQ7joZGRlISUlB9+7da7QNIiIiIqK3gUKJxauIRCKsWbOmym481tbWAIB79+7B398fWlpa8PPzg6WlJTQ0NCASiRASEiKTaCiivLy8ymVV3XWwsbHBzJkzq1xP0XEd3bt3R9OmTbF3794qE4uDBw8CAIYOHarQNoiIiIiI6kOdJxbm5uZITEyEsbExrKysqq176tQpPHv2DKGhoXBycpJalpubC3V1dakykUhUZVt6enoyTywEIPPkw1cxNzfHkydP0Llz59cyvqG4uLjKWaFKS0tx5MgRNGnSBL17967zbRMRERERvS51/sm5cmD1unXr5N4teLEbVOUH95cfpbF//36ZR58Dz8djVPWh3MLCAikpKSgqKpKU5eXl4dChQ7WK393dHdnZ2YiOjpa7XF5cL3v06JHc8p9//hkFBQVo37693OVnzpzBkydP4ObmJjP2g4iIiIjobVbnn17t7e3h7++PyMhI+Pj4oG/fvjAyMsKjR4+QmpqKs2fP4ty5cwAAFxcXhIeHY+HChfDy8oKOjg6uXLmCxMREmJmZySQmDg4OkiciWllZQSQSwdXVFZqamvDy8kJQUBACAgLg5uaG/Px8HDhwACYmJjVKBip98sknOH/+PMLCwpCUlITOnTtDS0sL9+7dQ1JSEtTV1WVmxHrZ9OnToaenhw4dOsDY2BgFBQW4fPkyzpw5g+bNm8Pf31/uepVJEJ9dQURERET/Nq/la3F/f3/Y2dlh165d2LlzJwoLC2FgYABra2vMmTNHUs/MzAxr1qzBunXrEBUVBRUVFTg6OiIiIgLBwcHIysqSajcwMBC5ubmIjY1Ffn4+BEHAoUOHoKmpiUGDBuHhw4fYs2cPVq1ahRYtWmDChAlQUVGp1exSampqWL16Nfbu3YsjR45IkggjIyPY29vDw8PjlW0MGzYMJ0+exIEDB5CTkwM1NTWYmZlh7NixGD16NPT19WXWuXfvHs6dO4cOHTq8sgsZEREREdHbRiS83A+J/vUGLCut7xAkro6Vfdo61Z9g42X1HUKVvE7+7w7lIrffJD8vLS2rj3CIiIiolvj0NSIiIiIiUhoTCyIiIiKiGrC0tMS4cePqO4y3FhMLIiIiImrQ0tPTMWnSJLRq1QoaGhrQ1dWFi4sLwsLC6uS5aq9TUlISpk6dCnt7e2hpacHCwgJeXl64cePGG4+Fc5oSERERkcK+alT/HyeVGY8XFxeHESNGQCwWY8yYMWjfvj1KSkqQkJCAuXPn4tq1a4iMjKzDaOvWihUrcPbsWYwYMQIdOnTAvXv3sHbtWnTq1Annzp2r8jEHr0P9nwlERERERPUgMzMTI0eORMuWLXHy5EmYmJhIlk2ZMgV//vkn4uLi6jHCV5s1axZiYmKkHizt7e0NBwcHLF++HDt27HhjsbArFBERERE1SMHBwSgoKMDmzZulkopKNjY2mD59epXrP378GHPmzIGDgwO0tbWhq6uLQYMG4cqVKzJ1w8PDYW9vj8aNG6NJkyZwcnJCTEyMZHl+fj5mzJgBS0tLiMViNGvWDP369cOlS5eq3QdnZ2eppAIAWrduDXt7e6Smpr7qJahTvGNBRERERA3S4cOH0apVKzg7Oyu0fkZGBg4cOIARI0bAysoK9+/fR0REBHr16oXr16/D1NQUALBp0yZMmzYNnp6emD59OoqKipCcnIzz58/Dx8cHABAQEIC9e/di6tSpsLOzQ3Z2NhISEpCamopOnTrVKi5BEHD//n3Y29srtF+KYmLxDvrYMAq+vr5o1KhRfYcCYFB9B0BS3uLj0e9/Py59ex7FQkRE76i8vDzcuXMHQ4cOVbgNBwcH3LhxAyoq/+sE9Omnn6Jdu3bYvHkzgoKCADwfx2Fvb4/Y2Ngq24qLi8PEiRMREhIiKZs3b55CcUVHR+POnTtYvHixQusril2hiIiIiKjBycvLAwDo6Ogo3IZYLJYkFeXl5cjOzoa2tjbatm0r1YVJX18ft2/fRlJSUpVt6evr4/z587h7967C8QBAWloapkyZgu7du2Ps2LFKtVVbTCyIiIiIqMHR1dUF8Hxsg6IqKiqwatUqtG7dGmKxGIaGhjAyMkJycjJyc3Ml9T7//HNoa2ujS5cuaN26NaZMmYKzZ89KtRUcHIyrV6/C3NwcXbp0waJFi5CRkVGreO7duwd3d3fo6elh7969UFVVVXjfFMHEgoiIiIgaHF1dXZiamuLq1asKt7Fs2TLMmjULrq6u2LFjB3755RecOHEC9vb2qKiokNSztbXFH3/8gV27dqFHjx746aef0KNHD3z99deSOl5eXsjIyEB4eDhMTU2xcuVK2Nvb4+jRozWKJTc3F4MGDUJOTg6OHTsmGd/xJokEQRDe+FbptYqMjHyLxlgQERHRu+zf/ByLSZMmITIyEomJiejevfsr61taWqJ3797YunUrAOC9996DgYEBTp48KVXPzMwMNjY2OH36tNx2SkpKMHz4cBw7dgwFBQXQ0NCQqfPgwQN06tQJlpaWSEhIqDauoqIi9O/fHxcvXkR8fHyN9uV14B0LIiIiImqQ5s2bBy0tLUyYMAH379+XWZ6eno6wsLAq11dVVcXL39HHxsbizp07UmXZ2dlSv6urq8POzg6CIKC0tBTl5eVSXacAoFmzZjA1NUVxcXG1+1BeXg5vb2/8+uuviI2NrbekAuCsUERERETUQFlbWyMmJgbe3t6wtbWVevJ2YmIiYmNjMW7cuCrX9/DwwOLFi+Hr6wtnZ2ekpKQgOjoarVq1kqrXv39/GBsbw8XFBc2bN0dqairWrl0Ld3d36OjoICcnB2ZmZvD09ISjoyO0tbURHx+PpKQkqVmi5Jk9ezYOHTqEwYMH4/HjxzIPxBs9erTCr09tMbEgIiIiogZryJAhSE5OxsqVK3Hw4EFs2LABYrEYHTp0QEhICCZOnFjlul9++SWePn2KmJgY7N69G506dUJcXBzmz58vVW/SpEmIjo5GaGgoCgoKYGZmhmnTpmHBggUAgMaNGyMwMBDHjx/Hvn37UFFRARsbG6xfvx6TJ0+uNv7Lly8DeP5MjsOHD8ssf5OJBcdYvIM4xoKIiIiI3jSOsSAiIiIiIqUxsSAiIiIiIqUxsSAiIiIiIqUxsSAiIiIiIqUxsSAiIiIiIqUxsSAiIiIiIqUxsSAiIiIiIqUxsSAiIiIiIqUxsSAiIiIiIqUxsSAiIiIiIqUxsSAiIiIiIqUxsSAiIiIiIqUxsSAiIiIiIqUxsSAiIiIiIqUxsSAiIiIiIqUxsSAiIiIiIqUxsSAiIiIiIqWp1XcAVLcEQUBhYSHy8vLQqFGj+g6HiIiIiN4BOjo6EIlE1dYRCYIgvKF46A149OgRjIyM6jsMIiIiInqH5ObmQldXt9o6vGPxjhGLxXjvvfcQFxcHbW3t+g6H3rCCggK4u7vz+DdQPP4NG49/w8bj37C9ieOvo6PzyjpMLN4xIpEIqqqq0NXV5RtLA6SiosLj34Dx+DdsPP4NG49/w/a2HH8O3iYiIiIiIqUxsSAiIiIiIqUxsXjHqKurY+LEiVBXV6/vUKge8Pg3bDz+DRuPf8PG49+wvS3Hn7NCERERERGR0njHgoiIiIiIlMbEgoiIiIiIlMbpZv9Fbt26heDgYCQnJ0NLSwtubm4IDAx85RO2BUHAtm3bEBsbi5ycHLRp0wazZs2Cg4PDG4qc6oKix3/w4MHIysqSKT979izEYvHrCpfq0D///IPt27fj6tWrSE9PR8uWLbFnz55Xrsdr/92g6PHntf9uiI+Px5EjR5CWloa8vDxYWFjA29sbQ4YMqfYpyLz+3w2KHv/6uv6ZWPxL5OXlISAgABYWFli5ciUePHiAVatWoaioCJ9//nm1627btg0RERGYOnUqWrdujdjYWEydOhXR0dEwMzN7Q3tAylDm+APAhx9+iNGjR0uV1fcAL6q59PR0nD17Fvb29qioqEBFRUWN1uO1/25Q9PgDvPbfBdHR0TAxMcGMGTPQpEkTnD9/HkuXLsX9+/fh7+9f5Xq8/t8Nih5/oJ6uf4H+FbZs2SL06NFDyMnJkZT99NNPQpcuXYQHDx5UuV5RUZHg6uoqrF27VlJWUlIieHh4CN99991rjZnqjqLHXxAEwcPDQ1i+fPnrDpFeo/LycsnPX3/9tTBixIhXrsNr/92hyPEXBF7774onT57IlH377beCq6ur1LnxIl7/7w5Fjr8g1N/1zzEW/xKJiYno0qUL9PT0JGX9+vVDRUUFzp07V+V6ycnJePr0Kfr27Sspa9SoEfr06YOzZ8++1pip7ih6/OndoKJS+7dqXvvvDkWOP7079PX1Zcratm2Lp0+forCwUO46vP7fHYoc//rEd6t/iVu3bsHS0lKqTEdHB4aGhrh161a16wGQWdfKygr37t1DUVFR3QZKr4Wix7/SsWPH0L17d/Ts2RPTpk3Dn3/++XoCpbcGr30CeO2/qy5fvoxmzZpBS0tL7nJe/++2Vx3/SvVx/XOMxb9EXl4edHR0ZMp1dHSQl5dX7Xrq6uoyA3V0dHQgCALy8/OhoaFR5/FS3VL0+AOAq6sr2rdvD2NjY9y5cwdbtmyBn58f+9m+43jtE6/9d9Ply5dx/PhxzJgxo8o6vP7fXTU5/kD9Xf+8Y0H0jps7dy4GDRqEjh07wsPDA5GRkQCAHTt21HNkRPQ68dp/99y/fx9ffPEFnJycMHLkyPoOh96w2hz/+rr+mVj8S+jq6qKgoECmPD8/H7q6utWuV1JSguLiYpn1RCKR3G/B6e2j6PGXx9DQEO+99x5SU1PrKjx6C/Hap5fx2v93y8/Px7Rp06Cnp4fg4OBqx97w+n/31Ob4y/Omrn8mFv8SlpaWMn3pCwoK8OjRI5k+lC+vBwB//fWXVPmtW7dgbGzMW6H/Eooef2q4eO0TvTuKioowY8YMFBQUYM2aNdDW1q62Pq//d0ttj399YmLxL+Hs7IzffvsN+fn5krL4+HioqKigW7duVa7XoUMHaGlpIT4+XlJWVlaGU6dOwcXF5bXGTHVH0eMvz8OHD3H58mXY2dnVdZj0FuG1Ty/jtf/vVFZWhi+++AK3bt1CeHg4mjVr9sp1eP2/OxQ5/vK8qeufg7f/JT7++GPs3r0bs2fPxvjx4/HgwQOEhYVh+PDhMDIyktSbPHkysrKycODAAQCAWCyGr68vIiMj0aRJE9jY2CA2Nha5ubkyD02ht5eix//YsWNISEiAi4sLjIyMcPv2bWzduhWqqqo8/v8iRUVFSEhIAABkZWXh6dOnkg8M77//Ppo0acJr/x2myPHntf/uWLFiBf7v//4PM2bMwNOnT5GSkiJZ1rZtW6irq/P6f4cpcvzr8/pnYvEvoauriw0bNmDlypWYPXs2tLS08NFHHyEwMFCqXnl5OcrLy6XKxo4dC0EQsGPHDjx58gRt2rRBeHg4ZwX5F1H0+Ldo0QIPHz5ESEgI8vPzoaOjg86dO2PSpElo0aLFm94NUtDjx48xf/58qbLK3zdu3AgnJyde++8wRY4/r/13R+WzilavXi2z7NChQzA1NeX1/w5T5PjX5/UvEgRBeK1bICIiIiKidx7HWBARERERkdKYWBARERERkdKYWBARERERkdKYWBARERERkdKYWBARERERkdKYWBARERERkdKYWBARERERkdKYWBARERERkdKYWBDVwIMHD6Cnp4dNmzZJlY8bNw6Wlpb1E9Q7YtGiRRCJRLh169Yb2d7WrVtltldYWAhTU1N88803tW6vqnODFFd5jE6fPl3foVA9U/b9gedSw3Xr1i2IRCIsWrTojW739OnTEIlE2Lp1q0LrX758GSoqKjhz5kzdBvaGMLEgqoEFCxbAyMgIvr6+Nap/7949zJkzB+3bt4eOjg50dXXRunVrjBw5Evv27ZOq27t3b2hra1fZVuUf1gsXLshd/uTJE2hqakIkEmH79u1VtmNpaQmRSCT5p66uDktLS0yYMAH//PNPjfbrXaWpqYn58+dj5cqVyMrKqtW6tT03qGG7fPkyFi1a9MYSaap/t27dwqJFi3D58uU3ul2ea7JycnKwaNGitzrRfO+99/DRRx9h9uzZEAShvsOpNSYWRK9w+/ZtbNmyBZ999hnU1NReWf+vv/6Co6Mj1q1bh27dumH58uX47rvv4OHhgbS0NERFRdVpfNHR0SguLoaVlRW2bNlSbV0zMzNs374d27dvR1hYGLp27YotW7aga9euePToUZ3G9W/j5+cHkUiE0NDQGq9T23ODaubTTz9FYWEhXF1d6zuUOnf58mV88803/LDXgNy6dQvffPNNvSQWDflca9myJQoLC7FgwQJJWU5ODr755pu3OrEAgBkzZuDixYs4cuRIfYdSa/xLSPQKEREREIlE+OSTT2pU//vvv8eDBw9w4MABDB06VGb5vXv36jS+zZs3o0+fPhg6dChmzJiBjIwMtGrVSm5dPT09jB49WvL75MmT0axZM6xduxZRUVGYO3duncb2b6KlpYXhw4dj69at+PbbbyEWi1+5Tm3PjfpWXl6O4uJiNG7cuL5DqZaqqipUVVXrOwwi+hcTiUTQ0NCo7zAU0rNnT1haWmLjxo1wd3ev73BqhXcsqM5V9mn9z3/+g8WLF6Nly5bQ1NRE165dce7cOQDAmTNn0KNHD2hpacHExARLliyR29aFCxcwbNgwGBoaQiwWo23btli6dCnKysqk6v32228YN24c2rRpg8aNG0NHRwcuLi7Yv3+/TJvjxo2DSCRCbm6u5IO1hoYGXFxccP78eZn6sbGxcHJyQrNmzWq0/zdv3gQAfPjhh3KXGxsb16idmrh06RIuX76MsWPHwsfHB2pqaq+8a/GyAQMGAAD+/PPPKuscPXoUIpEIa9askbu8e/fuMDIyQmlpKYDaHQ95Ko+RPCKRCOPGjZMp3717N3r06AEdHR00btwYXbt2xd69e2u0vUqDBg3Co0ePcOrUqRrVr+rcqKiowNKlS+Hq6gpjY2Ooq6vDwsICkydPRnZ2tqReTk4ONDQ0MHz4cLntf/HFFxCJRFLfdObm5uLzzz+HjY0NxGIxjIyM8MknnyAjI0Nq3crrMD4+HkuWLIG1tTU0NDSwZ88eAMDx48fh7e2NVq1aQVNTE/r6+ujfv3+V/Xp/+uknODo6QkNDAxYWFvjmm28QHx8vty9xcXExli1bBnt7e2hoaEBfXx+DBw/G77//XqPXVV6/+Lp6X7G0tETv3r1x6dIlfPDBB9DW1oaBgQHGjh2LBw8eSNXNz8/HggUL0LVrV8l7kI2NDebPn49nz57JtC0IAjZt2oSuXbtCW1sb2tracHBwwMKFCwE879ZY2WWuT58+km6J8s7nlyUnJ2PYsGFo2rQpNDQ0YGdnh+DgYJSXl0vVq+37mzyV3S+vX7+OGTNmwMTEBI0bN8aHH36IP/74AwCwb98+dOrUCZqamrC0tERkZKTctn744QdJPT09PfTv3x8JCQky9SoqKvDdd9/BysoKGhoaaN++PaKjo6uMMSsrC5MnT4aFhQXU1dVhamoKf39/mWNYWzV9nXv37i13fN3L/fq3bt2KPn36AAB8fX0lx7x3794ApPvjh4eHo02bNtDQ0ECbNm0QHh4u037l+fuyl/v1K3quVZ4/2dnZGDduHAwNDaGjo4OPPvpI8qVYZGQkbG1toaGhgXbt2uHgwYMy7axfvx79+/dHixYtoK6uDhMTE4wePVru3ZPy8nIsWbIELVu2hIaGBjp06IDdu3fLHV9Tm/P75WNx+vRpWFlZAQC++eYbyWtSeRyrGxtR1d+kgwcPomPHjtDQ0IC5uTmCgoIkfwdfVpv3RZFIhAEDBuDYsWMoKCiQ297bincs6LWZP38+ysvLMX36dJSUlCAkJAT9+/fHjz/+CD8/P/j7+2PUqFHYs2cPFi5cCCsrK6lv0+Pi4jB8+HDY2Nhg9uzZMDAwwK+//oqFCxfi8uXLiI2NldTdv38/0tLS4OXlhZYtWyI7Oxvbtm3D8OHDER0dDR8fH5n4BgwYACMjIyxcuBDZ2dkIDQ2Fu7s7MjMzoaOjAwC4f/8+/vjjD0ybNq3G+21tbQ0A2LRpE2bMmFHlB+SXVdUVSd4HmEqbN2+GtrY2Pv74Y2hpacHDwwPbtm3D4sWLoaJSs+8NKhMhQ0PDKuv0798fxsbG+PHHH2Vei5s3b+LcuXOYNm0aGjVqBECx46GMBQsWYOnSpRg4cCCWLFkCFRUV7N+/HyNGjMDatWsxZcqUGrXTvXt3AM//wAwcOLDautWdGyUlJVi5ciU+/vhjDB06FFpaWkhKSsLmzZuRkJCAixcvQl1dHfr6+hgyZAgOHjyIx48fw8DAQNJGRUUFoqOj0aFDB7z33nsAnicVzs7O+PvvvzF+/HjY29sjKysL69evR9euXXHhwgW0bNlSKpY5c+agtLQUEydOhK6uLtq2bQvg+Qeex48fY8yYMTAzM8OdO3fwww8/4MMPP8SpU6fQs2dPSRu7d+/GJ598Amtra3z99ddQU1PDtm3bcPjwYZl9Ly0txcCBA5GYmIhPP/0UU6dORW5uLjZt2gQXFxf897//hZOTU42OhzzKvq8Az7uwffjhh/j444/h6emJS5cuYcuWLbhw4QKSkpIkd3QqX5OPP/5YkrifOXMGwcHB+P333/HLL79Itfvpp58iOjoaXbt2xVdffQV9fX2kpaVh7969WLx4MYYPH46srCxERkbiyy+/hK2tLYD/vWdU5cKFC+jVqxcaNWqEKVOmwNjYGIcPH8bnn3+OK1euyP0AXpP3t1cZO3YstLW18eWXX+Lhw4cICQnBgAEDsGTJEsybNw+TJ0/G+PHjsXnzZkyaNAl2dnbo0aOHZP3PP/8cwcHB6NKlC5YtW4b8/HxERkaiT58+OHjwINzc3CR1Z82ahbCwMLi6umLmzJl48OABpkyZIvfu699//43u3bujpKQEfn5+sLa2xp9//okNGzbg1KlTuHDhAvT09Gq0j8q+zq/i6uqKL7/8EsuWLYO/v7/kumrevLlUvfDwcNy7dw+TJk2Cjo4Odu7ciWnTpuHx48f4+uuva71dRc+1SgMHDoSZmRkWL16MP//8E2vWrMGwYcMwfPhwREZGws/PDxoaGlizZg08PT1x48YNyYd24Pmd+27dumHatGkwMDDA1atX8cMPP+DkyZNISUlB06ZNJXWnTp2KjRs3ok+fPpgzZw4ePnyIwMBAqfZepsj5bWtri1WrVmHmzJmSfQFQ7RjH6uzfvx8ff/wxLC0tsXDhQqipqSEqKgpxcXEydRV5X+zevTsiIiKQkJDwyr9HbxWBqI5FRUUJAISOHTsKxcXFkvKDBw8KAAQ1NTUhKSlJUl5cXCwYGxsL3bp1k5QVFhYKzZs3F3r27CmUlpZKtR8aGioAEE6dOiUpKygokInj6dOnQps2bQRbW1up8rFjxwoAhMmTJ0uV79mzRwAgbNy4UVJ28uRJAYAQFhYmd1/Hjh0rtGzZUqosPT1d0NXVFQAI5ubmgo+Pj7Bq1SrhwoULctvo1auXAOCV/158zSpfI319fWHs2LGSsgMHDggAhCNHjshsp2XLlkK7du2Ehw8fCg8fPhQyMjKELVu2CHp6eoKampqQkpIiN75Kc+bMEQAI165dkypfsGCBAEC4ePGipKw2x+Prr78WAAiZmZmSsspjJA8AqX2+ePGiAED44osvZOoOHTpU0NHREfLy8iRllefni9t7kZqamuDh4SF32YuqOzcqKiqEZ8+eyZT/8MMPAgBh9+7dkrKff/5ZACCsW7dOqm58fLwAQAgJCZGUTZs2TdDQ0BAuX74sVffWrVuCjo6O1OtSuZ9t2rQRnj59KhOLvGN07949oWnTpsKgQYMkZaWlpYKpqanQrFkz4fHjx5Ly/Px8wcrKSgAgREVFScorr89jx45JtZ2bmyuYm5sLvXr1ktnuyypjf/Ear4v3FUF4fh0AEFatWiVVXhn3d999J9VGSUmJTHyV5/z58+clZbt37xYACKNHjxbKy8ul6r/4u7x9exVnZ2dBVVVVuHLliqSsoqJCGDFihABAiI+Pl5TX5v2tKpXXpIeHh1BRUSEpDwsLEwAIOjo6wt9//y0pf/DggSAWi4WRI0dKytLS0gSRSCS4uLhIHa87d+4Ienp6QsuWLYWysjKpuh988IGkTBCeX9sikUjmeh0yZIhgZGQk/PPPP1JxJyUlCaqqqsLXX38tKavN612b17lXr14y7/2CIAiZmZkCAKkYTp06JXOdvLxMW1tban+Ki4uFzp07C2pqalLlLVu2lHsNyduGIuda5fkTGBgoVT5z5kzJ37Tc3FxJ+ZUrVwQAwvz586Xqy3t/qXxPW7FihaTs6tWrAgBhwIABUtdJcnKyoKKiUuXfhpqc3/KOhbyyStUdp5f/JpWVlQnm5uZC06ZNhYcPH0rKc3JyBAsLizp5X/y///s/AYDw/fffyyx7m7ErFL02kydPhrq6uuT3ym9qunbtKpWZq6uro0uXLpJvzgHgxIkTuH//Pnx9fZGTk4NHjx5J/lV+y3X8+HFJfS0tLcnPz549Q3Z2Np49e4YPPvgAqampyMvLk4lv5syZUr9/8MEHACAVx8OHDwFA6pvkV2nVqhWuXLki+ZY8JiYGM2fOhJOTEzp06ICLFy/KrKOhoYETJ07I/ffpp5/K3c6+ffuQk5ODsWPHSsrc3NxgZGRUZXeotLQ0GBkZwcjICK1atcL48eNhaGiIgwcPon379tXuV+V2fvzxR0mZIAjYsWMH2rdvj06dOknKFTkeioqOjoZIJMLYsWOlzpNHjx5hyJAhyM/Px6+//lrj9gwMDGrUnaK6c0MkEkFTUxPA89v8ledw5Tn24i37AQMGoHnz5lKvK/D8dVZTU8OoUaMAPH+to6Oj4erqihYtWkjtp5aWFrp16yZ1TVSaPHmy3DEVLx6jgoICZGdnQ1VVFV27dpWK7+LFi7h79y7GjRuHJk2aSMq1tbUREBAg0+6OHTvQrl07vP/++1IxlpSUoF+/fkhISEBhYaGcV7RmlHlfqaSrq4vAwECpssDAQOjq6kp111NXV5fchSsrK8OTJ0/w6NEj9O3bF4D0caz8Nvv777+XuVtY07uH8jx48ACJiYkYMmQIOnToICkXiUT46quvAEBuF8OavL+9yrRp06TuuFa+1kOGDIG5ubmk3MjICG3btpVq++DBgxAEAfPmzZM6XqampvD19cVff/0l6QJSWXfWrFlSY2s6deqEfv36ScWUm5uLn3/+GUOGDIGGhobUOWZpaQkbGxu518GrKPo615VRo0bBzMxM8ru6ujpmzpyJsrIyuXcGX7cZM2ZI/V557MeMGQNdXV1JeYcOHaCrqytzXlW+v1RUVCA3NxePHj2Co6Mj9PT0pK6bn3/+GQAwffp0qevEwcFB0k1Xnro4v5Vx8eJF/PPPP/D19ZW626+np1dn74uVd3WU7d73prErFL02L9/CrvxQIu/2ZpMmTaT6nqempgIAxo8fX2X79+/fl/z84MEDLFiwAAcPHpR7Eebk5Ei9GcqLr/IifjGOyj+qQi2nfLO0tMTatWuxdu1aZGVlISEhAdu3b8fhw4fh4eGBa9euSX0gVVVVlXxYeZm8/sjA825QRkZGMDMzkxof0b9/f8TGxuLRo0cy3ZssLS0lz1uo7JdsY2NTo32qTB6io6OxbNkyqKio4L///S9u3bqF4OBgqbqKHA9FpaamQhAEtGvXrso6L54rryIIQo26r73q3NizZw9CQkLw+++/y/S5ffLkieTnyuQhNDQUN27cQJs2bfD06VPs27cP/fv3l3SZePjwIbKzs3H8+HEYGRnJ3aa8D7Bt2rSRWzc9PR1fffUVfvnlF+Tk5MjdNwDIzMwEAEkXqhfJK0tNTUVhYWGVMQLPu/29+MG0NpR5X3mxjRc/7AKAWCxGq1atZMaqrF+/Hhs3bsS1a9dQUVEhtezF43jz5k2YmJjIdHFRVuXrb29vL7PM1tYWKioqMjEDNXt/e5XavtZ//fVXjeKuLMvIyICTk5MkfnnXsJ2dnVSi8Mcff6CiogKbN2/G5s2baxR3TSj6OteVyq5KL7KzswOA17rdqih7nZ08eRKLFy/G+fPnUVRUJLXsxevmVe8vR48erVF8ipzfynjVOfsyRd4XK/+21LQ79duCiQW9NlXN6lKT2V4qL6iVK1dK+pe/zNTUVFK3f//+SE1NxfTp0+Hk5AQ9PT2oqqoiKioKMTExMh8IqovjxQ+KlW8Cjx8/fmXMVTExMcGIESMwYsQIjBo1CjExMThy5IhMv+/ayMzMxKlTpyAIQpUfHHfs2CHzrZOWllaVCUxNjBkzBjNmzMDJkyfRt29f/Pjjj1BVVZXaF0WPx4uqeiN9edB+5fZEIhGOHj1a5TGV92GhKk+ePKn2zb9SdefGvn374O3tjS5duiAsLAzm5ubQ0NBAeXk5Bg4cKLP/Y8aMQWhoKH788Ud8++232LdvHwoKCqTuRlWel3379sXnn39e4/2Rd7eioKAArq6uePr0KWbMmAEHBwfo6OhARUUF3333HU6ePFnj9l8mCAIcHByqnba3Jq9vVZR5X6mt0NBQzJ49G/3798e0adNgamoKdXV13LlzB+PGjXvleVyfavL+pmgbddG2oiq3MXr0aKnr40WVdwtfp9q8R/0bt6vMsU9KSkL//v1hY2OD5cuXw8rKSvKspZEjR9bJdfM6zsHqPsAr+/oq8r5Y+bdFmffL+sDEgt5KrVu3BlCzD8LJycm4cuUKFi5cKPPk5B9++EGpOCo/kNbV7dVu3bohJiYGd+7cUaqdqKgoyQw0+vr6MssXLFiALVu2yCQWyvLx8cHcuXPx448/wsXFBXv37kW/fv1gYmIiqVMXx6Pybs7LA5rlfXPXunVrHDt2DBYWFnK/9auNW7duoays7JXdwoDqz43t27dDQ0MDp06dkvpgn5aWJrctR0dHODo6YseOHViyZAl+/PFHycDuSkZGRtDX10deXp5SySEA/Oc//8Hdu3exZcsWmQf7vTjnOwDJjCmVswG9SF5Z69at8fDhQ3zwwQdKdQF6nTIyMlBSUiJ116K4uBgZGRlS30Bu374dlpaWOHr0qNS+HDt2TKbNNm3a4ODBg7h//361dy1q++1j5TfE165dk1mWlpaGiooKhb6hf90qY7p27ZrMgOHr169L1an8Py0trcq6lWxsbCASiVBSUqL0dfCi2r7OBgYGcru1ynuPqskxr7xL/6KXX6fK7cr7MkPR7b4OMTExKC8vx9GjR6XucDx9+lTqbgUg/f7y8nks7/1FWdW9Ji/+3XnZy6/vi+fsy14+ZwHF3hcreyLU5O/R2+TtfNenBm/AgAFo1qwZli9fLvciLywsRH5+PoD/fXPx8jcVV69eVbpPrJGREezt7SXTWdbE6dOn5fYhr6iokPSVlXertKYqKiqwdetWODg4YMKECfD09JT598knnyAlJQVJSUkKb0ceIyMjDBo0CPv27UN0dDTy8vJkvjWsi+NReRcmPj5eqjwkJESmbuUYlC+//FJmSkigdt2gKo9zr169Xlm3unNDVVUVIpFI6ps5QRDw7bffVtne2LFj8ddffyEmJgYnT56Et7e31BzsKioqGDVqFH777bcqp9GtaV/cqo7R8ePHZaZsdHJygomJCbZu3Sr1oaCgoAAbN26UaXvMmDG4d+9eld/M1eZ4vC55eXlYv369VNn69euRl5eHjz76SFJWeRxffJ3KysqwfPlymTYrx8LMmzdP5hvZF9evnIGmpndBmzVrBmdnZxw+fBhXr16VavO7774DAAwbNqxGbb1JQ4YMgUgkwsqVK6W6AmZlZSEqKgotW7ZEx44dpeqGhoZKXcOXLl2SeQ9o2rQp3NzcsG/fPrnXniAIkvFPtVHb17lNmzbIz8/Hb7/9JimrqKjAqlWrZNquyTGPjo7G7du3Jb+XlJRg1apVUFVVhYeHh9R209LSpL6cKi4uxrp16xTa7utQ1fvLsmXLZK6NwYMHAwDCwsKklqWkpMjMulYXqntNrKysoKamJnPOJSYmypxr77//PszMzBAVFSU1o2NeXl6dvS+eO3cOampqcHFxefWOvUV4x4LeSlpaWvjxxx/x0UcfoW3bthg/fjxsbGyQk5ODtLQ07Nu3D/v370fv3r1ha2sLe3t7BAcH49mzZ2jbti1u3LiBiIgIODg4yP1WqTZGjBiBJUuWICsrS+qb+ap8//33OHv2LAYPHoxOnTpBT08P9+7dw08//YSLFy+iT58+Sj3w5vjx4/jnn3/g5+dXZZ2PP/4YixYtwubNm9G5c2eFtyXP2LFjcejQIcyePRt6enpSH8QA1Mnx+OSTT/Dll1/C398faWlpMDAwwLFjx+ROydu5c2csWrQIixYtwnvvvYcRI0bA1NQUWVlZkieXlpSU1Gjfjhw5AkNDQ8m8869S1bnh6emJn376CR988AHGjBmD0tJSHDhwoNqpg0eNGoV58+YhMDAQFRUVcrt5LF26FGfPnoWXlxe8vLzQrVs3qKur46+//sKRI0fw/vvvy52D/WU9evSAsbExZs+ejVu3bsHMzAyXL1/G9u3b4eDggJSUFEldNTU1fP/99xg1ahS6dOkCPz8/qKmpYevWrWjatCkyMzOlvgWcPn06Tpw4gblz5+LkyZP44IMPoKuri7///hv/+c9/JHdy6pO1tTW++eYbXL16Fe+//z4uXryILVu2oF27dlLTB3t6euKLL77AoEGDMHz4cOTl5SEmJkYyoPtFI0aMgLe3N3788UfcvHkTQ4YMQZMmTXDjxg388ssvkg+rnTt3hoqKCpYuXYonT55AS0sLVlZW6Nq1a5XxhoWFoVevXujZs6dkGtSff/4Zv/zyC3x8fKp8Zk59atu2LebOnYvg4GC4urrC29tbMt1sQUEBoqOjJR9A27VrhylTpmDt2rX44IMP8PHHH+PBgwdYu3YtHB0dZeb537BhA3r06AFXV1eMGTMGHTt2REVFBTIyMnDw4EGMGTNG8uyC2qjN6+zv74+QkBAMGzYM06dPh7q6Ovbu3Su3y4ydnR10dHSwfv16NG7cGPr6+mjWrJlkwDHwPGHo2rUrAgICoKOjg5iYGCQlJSEoKEiq3/3UqVOxa9cu9O3bFwEBASgpKcH27dvldnlU5FyrC8OGDcOqVavg5uYGf39/qKur48SJE0hOTpYZ92dvbw9/f39ERkaib9++GDZsGB4+fIh169ahY8eOuHjxYp3eeWnatClsbGywa9cuWFtbo3nz5tDS0sLgwYOhra2NcePG4YcffsAnn3yC3r174+bNm4iKikKHDh1w5coVSTuqqqpYtWoVvLy80KVLF0ycOFHyHKmmTZvi77//ltpubd8XBUHAsWPHMHDgQIWnw603r3nWKWqAqpviDi9NFVqpqulFU1JShFGjRgmmpqZCo0aNhGbNmgndu3cXFi9eLGRnZ0vq3bp1S/D09BQMDQ0FTU1NoXPnzsK+ffuUnspUEJ5Pj6impiZ3yjd5083++uuvwqxZswQnJyehWbNmgpqamqCnpyd069ZNCAkJEYqKiqTq9+rVS9DS0pIbjyD8b+rHyqk0PT09BQBCcnJylesIgiC0adNG0NPTk0x72rJlS8He3r7adWqiuLhYMDAwEAAIEyZMkFunNsdDXpkgCMK5c+cEZ2dnQSwWC02bNhUmTpwoPHnypMpz6Oeffxb69+8vNGnSRFBXVxfMzMyEgQMHChs2bJCqV9V0swUFBYKWlpYwZ86cGr8W1Z0bkZGRgq2trSAWiwVjY2Nh4sSJQnZ2dpXxC4IgeHh4CACE1q1bV7nNp0+fCosXLxbat28vaGhoCNra2kK7du2ECRMmCOfOnZPZz6qmmrxy5YowYMAAQV9fX9DW1hZ69eol/Pe//63y+tizZ4/g4OAgqKurC+bm5sKiRYuEffv2yUyfKwjPp6gNCwsTnJychMaNGwuNGzcWbGxsBB8fH+GXX36pct+qi72u3lcqp+u8ePGi0KdPH6Fx48aCvr6+MHr0aOHevXtSdcvKyoRly5YJ1tbWgrq6umBhYSHMnTtXuH79utwpK8vLy4W1a9cKHTt2FDQ1NQVtbW3BwcFBWLRokVS9rVu3Cra2tkKjRo2qPR9edPnyZWHo0KGS87tdu3bCihUrpKZnrWqfX/U6vayqa7K6qTqrmn41MjJSeO+99wSxWCzo6OgIffv2Ff773//K1CsvLxe+/fZbwcLCQlBXVxfs7e2FHTt2VBnLw4cPhTlz5gitW7cWxGKxoKenJ7Rv316YNm2a1JTYtZ1ytaavsyAIQlxcnODo6Cioq6sLJiYmwrx584S0tDS5r1FcXJzQsWNHQSwWCwAk04u+OMVpWFiYYGNjI6irqws2NjbC6tWr5ca4detWoU2bNkKjRo0ES0tLYcWKFcJ//vMfuVOl1vZcq+r8qW4qVnlT4O7fv1/o1KmT0LhxY6Fp06aCt7e38Ndff8mtW1ZWJixatEgwNzcX1NXVBQcHB2H37t3C7NmzBQDC/fv3XxmfIMie31Wdr+fPnxecnZ2Fxo0bCwCkztv8/HzBz89PMDAwEDQ1NYUePXoIZ8+erXK7P/30k+QcMDMzExYsWCAcP35c7mtVm/fF06dPCwCEn3/+We6+vs1EgvAGRlsR/csFBATg+PHj+OOPP6S+rRw3bhxOnz4t92mi9HbaunUrfH19kZmZKfXk3LCwMHz11VeS2X1qqqpzoyEICQnBnDlz8Ouvv6Jbt271HU6NWFpawtLSUuqp3kT15fTp0+jTpw+ioqJq9AT2hmTw4ME4efIk8vLyXsvkDG+zYcOG4Z9//kFSUtK/blYojrEgqoHFixcjOzsbUVFR9R0KvQaFhYVYvnw55s6dW6ukAmgY50ZJSYnM+JWCggKsW7cOTZs2lXqGCRFRbcgbk5icnIyjR4/igw8+aHBJxe+//46DBw8iJCTkX5dUABxjQVQjzZo1Q25ubn2HQa+JpqYmsrKyFFq3IZwbGRkZGDRoEEaOHAkrKytkZWVh27ZtyMzMxIYNG2SeCUFEVFPbtm3Djz/+CHd3dxgZGSEtLQ2RkZFQV1fH4sWL6zu8N65yzNC/FRMLIiKqlpGREbp164bo6Gg8ePAAampqcHBwwPLly+Hl5VXf4RHRv1inTp2wf/9+rFmzBo8fP4aOjg4++OADfP3115KZw+jfg2MsiIiIiIhIaRxjQURERERESmNiQURERERESmNiQURERERESmNiQURERERESmNiQURERERESmNiQURERERESmNiQURERERESmNiQURERERESmNiQURERERESvt/GapiKkzora0AAAAASUVORK5CYII=\n", @@ -826,6 +841,7 @@ } ], "source": [ + "import matplotlib as mpl\n", "umap_cmap = mpl.colors.ListedColormap(colors, name='umap_cmap')\n", "shap_values = explainer.shap_values(umap_df['waveform'].tolist())\n", "shap.summary_plot(shap_values, color = umap_cmap)" @@ -833,7 +849,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 16, "id": "9165be98-38b6-4aa8-8f79-614158214ed2", "metadata": { "tags": [] @@ -842,6 +858,14 @@ "source": [ "umap_df.to_csv('umap_df.csv')" ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8b9d1291-014a-4567-949c-927760f1543e", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/full_data.npy b/full_data.npy new file mode 100644 index 0000000..23eab4b Binary files /dev/null and b/full_data.npy differ diff --git a/pyproject.toml b/pyproject.toml index 8a3d048..5ed1495 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [tool.poetry] name = "wavemap_paper" -version = "0.1.11" +version = "0.1.12" description = "" authors = ["Eric Kenji Lee "]