forked from PaddlePaddle/PaddleHub
-
Notifications
You must be signed in to change notification settings - Fork 0
/
module.py
130 lines (110 loc) · 4.43 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
from __future__ import absolute_import
from __future__ import division
import os
import cv2
import argparse
import base64
import paddlex as pdx
import numpy as np
import paddlehub as hub
from paddlehub.module.module import moduleinfo, runnable, serving
def base64_to_cv2(b64str):
data = base64.b64decode(b64str.encode('utf8'))
data = np.fromstring(data, np.uint8)
data = cv2.imdecode(data, cv2.IMREAD_COLOR)
return data
def cv2_to_base64(image):
# return base64.b64encode(image)
data = cv2.imencode('.jpg', image)[1]
return base64.b64encode(data.tostring()).decode('utf8')
def read_images(paths):
images = []
for path in paths:
images.append(cv2.imread(path))
return images
@moduleinfo(
name='food_classification',
type='cv/classification',
author='郑博培、彭兆帅',
author_email='[email protected], [email protected]',
summary='Food classification',
version='1.0.0')
class MODULE(hub.Module):
def _initialize(self, **kwargs):
self.default_pretrained_model_path = os.path.join(self.directory, 'assets')
self.model = pdx.deploy.Predictor(self.default_pretrained_model_path, **kwargs)
def predict(self, images=None, paths=None, data=None, batch_size=1, use_gpu=False, **kwargs):
all_data = images if images is not None else read_images(paths)
total_num = len(all_data)
loop_num = int(np.ceil(total_num / batch_size))
res = []
for iter_id in range(loop_num):
batch_data = list()
handle_id = iter_id * batch_size
for image_id in range(batch_size):
try:
batch_data.append(all_data[handle_id + image_id])
except IndexError:
break
out = self.model.batch_predict(batch_data, **kwargs)
res.extend(out)
return res
@serving
def serving_method(self, images, **kwargs):
"""
Run as a service.
"""
images_decode = [base64_to_cv2(image) for image in images]
results = self.predict(images_decode, **kwargs)
res = []
for result in results:
if isinstance(result, dict):
# result_new = dict()
for key, value in result.items():
if isinstance(value, np.ndarray):
result[key] = cv2_to_base64(value)
elif isinstance(value, np.generic):
result[key] = np.asscalar(value)
elif isinstance(result, list):
for index in range(len(result)):
for key, value in result[index].items():
if isinstance(value, np.ndarray):
result[index][key] = cv2_to_base64(value)
elif isinstance(value, np.generic):
result[index][key] = np.asscalar(value)
else:
raise RuntimeError('The result cannot be used in serving.')
res.append(result)
return res
@runnable
def run_cmd(self, argvs):
"""
Run as a command.
"""
self.parser = argparse.ArgumentParser(
description="Run the {} module.".format(self.name),
prog='hub run {}'.format(self.name),
usage='%(prog)s',
add_help=True)
self.arg_input_group = self.parser.add_argument_group(title="Input options", description="Input data. Required")
self.arg_config_group = self.parser.add_argument_group(
title="Config options", description="Run configuration for controlling module behavior, not required.")
self.add_module_config_arg()
self.add_module_input_arg()
args = self.parser.parse_args(argvs)
results = self.predict(paths=[args.input_path], use_gpu=args.use_gpu)
return results
def add_module_config_arg(self):
"""
Add the command config options.
"""
self.arg_config_group.add_argument('--use_gpu', type=bool, default=False, help="whether use GPU or not")
def add_module_input_arg(self):
"""
Add the command input options.
"""
self.arg_input_group.add_argument('--input_path', type=str, help="path to image.")
if __name__ == '__main__':
module = MODULE(directory='./new_model')
images = [cv2.imread('./cat.jpg'), cv2.imread('./cat.jpg'), cv2.imread('./cat.jpg')]
res = module.predict(images=images)