-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmain.cpp
184 lines (158 loc) · 5.4 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#include <iostream>
#include "ChessPatternDetector.h"
#include "RotationMatrix.h"
#include "Projection.h"
#include "PSO.h"
static vector<Point2f> corners;
Point3d realPoint[9];
GeometryParameter geometry;
/*
func :
func is our cost function . it calculate error of particles
in pso optimization .
it give x which include in intrinsic and extrinsic parameters of camera .
then transform rotation angles to "quaternion" and rotate
points then calculate error with euclidean distance .
*/
auto func( vector<double> x ) -> double
{
Projection pj;
geometry = euler2quaternion( x[0], x[1], x[2] );
geometry.set_Tx( x[3] );
geometry.set_Ty( x[4] );
geometry.set_Tz( x[5] );
geometry.set_Distortion( x[6] );
geometry.set_FocalLenght( x[7] );
geometry.set_PrincipalPointX( x[8] );
geometry.set_PrincipalPointY( x[9] );
Point3d points[9];
for( int i = 0; i < 9; i++)
{
points[i] = Point3d( corners[i].x, corners[i].y, 0 );
}
long double error = 0;
Point3d dayy;
Point2d dayy2;
for ( int n = 0; n < 9; n++ )
{
Point3d poi = Point3d( corners[n].x, corners[n].y, 0 );
dayy2 = pj.Field2Image( Point2d( realPoint[n].x, realPoint[n].y ), geometry );
dayy = pj.Image2Field( poi, geometry, 0 );
error += sqrt( ( pow( corners[n].x - dayy2.x, 2 ) ) + ( pow( corners[n].y - dayy2.y, 2 ) ) );
error += sqrt( ( pow( realPoint[n].x - dayy.x, 2 ) ) + ( pow( realPoint[n].y - dayy.y, 2 ) ) );
}
return error;
}
auto main() -> int
{
int cameraIndex(1); // Check index of your camera in "/dev"
double num_h(3); // Number of hight chess corners
double num_w(3); // Number of width chess corners
int iteration_number(20); // Number of pso iteration
/*
get_pattern_point : Detect corners in image and
sort that the return corners (x, y)
and Mattrix of image
*/
auto Res = get_pattern_points(cameraIndex, num_h, num_w);
corners = Res.first;
Mat frame = Res.second;
/*
Input the dstance of camera to corners respectively.
Parameters : X Y Z = 0
note that parameters are in MM .
*/
realPoint[0] = Point3d( 290, -50, 0 );
realPoint[1] = Point3d( 290, 0, 0 );
realPoint[2] = Point3d( 290, 50, 0 );
realPoint[3] = Point3d( 240, -50, 0 );
realPoint[4] = Point3d( 240, 0, 0 );
realPoint[5] = Point3d( 240, 50, 0 );
realPoint[6] = Point3d( 190, -50, 0 );
realPoint[7] = Point3d( 190, 0, 0 );
realPoint[8] = Point3d( 190, 50, 0 );
double err(500);
pair<vector<double>, double> result;
/*
Optimization process :
This part of code very important because pso algorithm
very parameter based so pay attention to the parameters.
rand parameter give two number :
first :: minimum of generated random.
second :: maximum of generated random.
*/
PSO *pso;
for ( int i = 0; i < iteration_number; i++ )
{
PSO *t = new PSO;
t->set_numberOfParticles( 200 );
t->set_numberOfDimension( 10 );
t->set_maximumOfIteration( 750 );
t->set_rand_rx( -90, 90 );
t->set_rand_ry( -90, 90 );
t->set_rand_rz( -90, 90 );
t->set_rand_tx( -10, 10 );
t->set_rand_ty( -10, 10 );
t->set_rand_tz( -10, 10 );
t->set_rand_distortion( -0.01, 0.01 );
t->set_rand_focalLength( 500, 520 );
t->set_rand_principalPointX( 319, 321 );
t->set_rand_principalPointY( 239, 241 );
t->set_errorCon( 30 );
t->set_w( 0.5 );
t->set_c1( 0.2 );
t->set_c2( 1.8 );
auto result_t = t->optimize( func );
cout << " *********************** " << endl;
cout << " Iteration : " << i + 1 << endl;
cout << " Error : " << result_t.second << endl;
cout << " *********************** " << endl;
if ( result_t.second < err )
{
err = result_t.second;
pso = t;
result = result_t;
}
if ( result_t.second < 60.0 )
break;
}
// Print Results
cout << " ********************************************** " << endl;
cout << " Best Error : " << result.second << endl;
cout << " Rotation X : " << result.first[0] << endl;
cout << " Rotation Y : " << result.first[1] << endl;
cout << " Rotation Z : " << result.first[2] << endl;
cout << " Translation X : " << result.first[3] << endl;
cout << " Translation Y : " << result.first[4] << endl;
cout << " Translation Z : " << result.first[5] << endl;
cout << " Distortion : " << result.first[6] << endl;
cout << " Focal Lenght : " << result.first[7] << endl;
cout << " Principal Point X : " << result.first[8] << endl;
cout << " Principal Point Y : " << result.first[9] << endl;
cout << " ********************************************** " << endl;
//Projected chess board corners
geometry = euler2quaternion( result.first[0],
result.first[1],
result.first[2] );
geometry.set_Tx( result.first[3] );
geometry.set_Ty( result.first[4] );
geometry.set_Tz( result.first[5] );
geometry.set_Distortion( result.first[6] );
geometry.set_FocalLenght( result.first[7] );
geometry.set_PrincipalPointX( result.first[8] );
geometry.set_PrincipalPointY( result.first[9] );
// Draw circles on actual corners and predicted corners
for ( int i = 0; i < corners.size(); i++ )
{
Projection pp;
Point2d ff = pp.Field2Image( Point2d( realPoint[i].x, realPoint[i].y ), geometry );
Point3d aa = pp.Image2Field( Point3d( ff.x, ff.y, 5 ), geometry, 0 ); // A simple instance for transform image point to world point
// Predicted corners
circle(frame, ff, 5, Scalar(45, 0, 200), 2);
// Actual corners
circle( frame, corners[i], 5, Scalar( 200, 100, 45 ), 2 );
}
imshow("Result", frame);
waitKey(0);
return 0;
}