-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathfit.py
181 lines (151 loc) · 7.76 KB
/
fit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import torch
import torch.nn as nn
import time
import numpy as np
from datetime import datetime
class MyFit(nn.Module):
def __init__(self, model, optimizer, scheduler, writer, loss, device, fout):
super(MyFit, self).__init__()
self.model = model
self.optimizer = optimizer
self.scheduler = scheduler
self.writer = writer
self.loss_fn = loss
self.device = device
self.fout = fout
def log_string(self, out_str):
self.fout.write(out_str+'\n')
self.fout.flush()
print(out_str)
def train_one_epoch(self, trainloader, epoch_index):
running_loss = 0.
last_loss = 0.
running_acc = 0.0
num_pred = 0.0
num_total = 0.0
start_time = time.time()
i = 0
for batch in trainloader:
if batch is None:
continue
batch = [value.to(self.device) for value in batch]
mesh, target = batch[:-1], batch[-1].to(torch.long)
torch.cuda.empty_cache()
self.optimizer.zero_grad()
pred_logits = self.model(*mesh)
valid_mask = (target>=0) &(target<pred_logits.shape[-1])
loss = self.loss_fn(pred_logits[valid_mask], target[valid_mask])
loss.backward()
self.optimizer.step()
pred_labels = torch.argmax(pred_logits.detach(), dim=-1)
matched = (pred_labels[valid_mask]==target[valid_mask])
acc = matched.to(torch.float)
running_acc += torch.mean(acc).item()
num_pred += torch.sum(acc)
num_total += acc.shape[0]
# Gather data and report
running_loss += loss.detach().item()
if i%50==49:
last_loss = running_loss/(i+1) # loss per batch
last_runtime = (time.time()-start_time)/(i+1)
self.log_string('train batch {} loss: {:.4f}, accuracy: {:.0f}/{:.0f}={:.2f}, '
'runtime-per-batch: {:.2f} ms'.format(i+1, last_loss, num_pred, num_total,
num_pred/num_total*100, last_runtime*1000))
self.writer.add_scalar('Loss/train', last_loss, epoch_index)
self.writer.add_scalar('Accuracy/train', num_pred/num_total*100, epoch_index)
i = i+1
avg_acc = running_acc/i
return last_loss, avg_acc
def evaluate(self, testloader, report_iou=False, class_names=None):
running_loss = 0.
running_acc = 0.0
num_pred = 0.0
num_total = 0.0
all_gt_labels = []
all_pred_labels = []
start_time = time.time()
i = 0
for batch in testloader:
if batch is None:
continue
batch = [value.to(self.device) for value in batch]
mesh, target = batch[:-1], batch[-1].to(torch.long)
torch.cuda.empty_cache()
pred_logits = self.model(*mesh)
valid_mask = (target >= 0) & (target < pred_logits.shape[-1])
loss = self.loss_fn(pred_logits[valid_mask], target[valid_mask])
pred_logits = pred_logits.detach()
pred_labels = torch.argmax(pred_logits, dim=-1)
running_loss += loss.detach().item()
matched = (pred_labels[valid_mask]==target[valid_mask])
acc = matched.to(torch.float)
running_acc += torch.mean(acc).item()
num_pred += torch.sum(acc)
num_total += acc.shape[0]
if report_iou:
all_gt_labels.append(target[valid_mask].cpu().numpy())
all_pred_labels.append(pred_labels[valid_mask].cpu().numpy())
i = i+1
avg_runtime = (time.time()-start_time)/i
avg_tloss = running_loss/i
avg_tacc = running_acc/i
self.log_string('test loss: {:.4f}, test accuracy:{:.2f}, runtime-per-mesh: {:.2f} ms'
.format(avg_tloss, avg_tacc*100, avg_runtime*1000))
if report_iou:
all_gt_labels = np.concatenate(all_gt_labels, axis=0)
all_pred_labels = np.concatenate(all_pred_labels, axis=0)
self.evaluate_iou(all_gt_labels, all_pred_labels, class_names)
return avg_tloss, avg_tacc
def evaluate_iou(self, gt_labels, pred_labels, class_names):
total_seen_class = {cat: 0 for cat in class_names}
total_correct_class = {cat: 0 for cat in class_names}
total_union_class = {cat: 0 for cat in class_names}
for l, cat in enumerate(class_names):
total_seen_class[cat] += np.sum(gt_labels == l)
total_union_class[cat] += (np.sum((pred_labels == l) | (gt_labels == l)))
total_correct_class[cat] += (np.sum((pred_labels == l) & (gt_labels == l)))
class_iou = {cat: 0.0 for cat in class_names}
class_acc = {cat: 0.0 for cat in class_names}
for cat in class_names:
class_iou[cat] = total_correct_class[cat] / (float(total_union_class[cat]) + np.finfo(float).eps)
class_acc[cat] = total_correct_class[cat] / (float(total_seen_class[cat]) + np.finfo(float).eps)
total_correct = sum(list(total_correct_class.values()))
total_seen = sum(list(total_seen_class.values()))
self.log_string('eval overall class accuracy:\t %d/%d=%3.2f' % (total_correct, total_seen,
100 * total_correct / float(total_seen)))
self.log_string('eval average class accuracy:\t %3.2f' % (100 * np.mean(list(class_acc.values()))))
for cat in class_names:
self.log_string('eval mIoU of %14s:\t %3.2f' % (cat, 100 * class_iou[cat]))
self.log_string('eval mIoU of all %d classes:\t %3.2f'%(len(class_names), 100*np.mean(list(class_iou.values()))))
def __call__(self, ckpt_epoch, num_epochs, trainloader, testloader, write_dir,
report_iou=False, class_names=None):
self.writer.add_scalar('Learning rate', self.scheduler.get_last_lr()[0], 0)
best_tacc = 0
for epoch in range(ckpt_epoch, num_epochs):
self.log_string("************************Epoch %03d Training********************"%(epoch+1))
self.log_string(str(datetime.now()))
self.model.train(True)
avg_loss, avg_acc = self.train_one_epoch(trainloader, epoch)
self.scheduler.step()
self.log_string("=======================Epoch %03d Evaluation===================="%(epoch+1))
self.log_string(str(datetime.now()))
self.model.train(False)
avg_tloss, avg_tacc = self.evaluate(testloader, report_iou, class_names)
self.log_string("****************************************************************\n")
self.writer.add_scalars('Loss', {'Train': avg_loss, 'Test': avg_tloss}, epoch+1)
self.writer.add_scalars('Accuracy', {'Train': avg_acc, 'Test': avg_tacc}, epoch+1)
self.writer.add_scalar('Learning rate', self.scheduler.get_last_lr()[0], epoch+1)
# Track best performance, and save the model's state
# if avg_tacc > best_tacc:
# best_tacc = avg_tacc
model_path = '{}/model_epoch_{}'.format(write_dir, epoch+1)
torch.save({'epoch': epoch,
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict()},
model_path, _use_new_zipfile_serialization=False)
self.writer.close()
torch.save({'epoch': epoch,
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict()},
f"{write_dir}/best_model", _use_new_zipfile_serialization=False)
return