forked from microsoft/onnxjs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.js
29 lines (24 loc) · 1.17 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
async function runExample() {
// Create an ONNX inference session with default backend.
const session = new onnx.InferenceSession();
// Load an ONNX model. This model is Resnet50 that takes a 1*3*224*224 image and classifies it.
await session.loadModel("./add.onnx");
const x = new Float32Array(3 * 4 * 5).fill(1);
const y = new Float32Array(3 * 4 * 5).fill(2);
const tensorX = new onnx.Tensor(x, 'float32', [3, 4, 5]);
const tensorY = new onnx.Tensor(y, 'float32', [3, 4, 5]);
// Run model with Tensor inputs and get the result by output name defined in model.
const outputMap = await session.run([tensorX, tensorY]);
const outputData = outputMap.get('sum');
// Check if result is expected.
const predictions = document.getElementById('predictions');
if (!outputData.data.every((value) => value === 3)) {
predictions.innerHTML = `Error: Data mismatch!`;
return;
}
if (outputData.data.length !== 3 * 4 * 5) {
predictions.innerHTML = `Error: Expected length of ${3 * 4 * 5} but got ${outputData.data.length}`;
return;
}
predictions.innerHTML = `Got an Tensor of size ${outputData.data.length} with all elements being ${outputData.data[0]}`;
}