-
Notifications
You must be signed in to change notification settings - Fork 0
/
LeNet.py
executable file
·40 lines (36 loc) · 1.19 KB
/
LeNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#!/usr/local/bin/python3.9
# -*- coding:utf-8 -*-
"""
@Author : Haiy. Yi
@Time : 2024/1/18 11:29
@File : LeNet.py
@Software : PyCharm
@System : MacOS catalina
"""
import sys
import os
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
import torch.nn as nn
import torch.nn.functional as F
from Utils.registries import MODEL_REGISTRY
@MODEL_REGISTRY.register()
class LeNet(nn.Module):
def __init__(self, cfg=None):
super(LeNet, self).__init__()
self.conv1 = nn.Conv2d(3, 16, 5)
self.pool1 = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(16, 32, 5)
self.pool2 = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(32 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = F.relu(self.conv1(x)) # input(3, 32, 32) output(16, 28, 28)
x = self.pool1(x) # output(16, 14, 14)
x = F.relu(self.conv2(x)) # output(32, 10, 10)
x = self.pool2(x) # output(32, 5, 5)
x = x.view(-1, 32 * 5 * 5) # output(32*5*5)
x = F.relu(self.fc1(x)) # output(120)
x = F.relu(self.fc2(x)) # output(84)
x = self.fc3(x) # output(10)
return x