-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvolume.py
237 lines (198 loc) · 8.68 KB
/
volume.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import numpy as np
import math
import scipy.optimize #add to requirements
from scipy.fft import fft
debug = False
ref_power = 2 * 10**-10 # power of the smallest sound you can hear
ref_pressure = 2 * 10**-5 # pressure of the smallest sound you can hear
# Recorded Signal Information
recordedSineTone = []
targetRange = [3.5, 4.5] # [min, max] seconds
lCalib = 104.92978421490648 # for max volume with gain of .04
def HarmonicPower(wave,fsHz,fHz):
#wave is digital sound vector
#fsHz is sampling frequency
#fHz is freq component we want to extract, e.g. 1000, 2000, 3000
#power is mean square of speicifed frequency component, independent of phase
#fHz = 1000
t = np.arange(len(wave))
t = t/fsHz
sinVector = np.sin(2*np.pi*t*fHz)
cosVector = np.cos(2*np.pi*t*fHz)
A = np.mean(np.multiply(sinVector,wave))
B = np.mean(np.multiply(cosVector,wave))
power = 2*(A**2 + B**2)
outDBSPL1000 = 10 * np.log10(power) + lCalib
vectorDb = 10 * np.log10(np.mean(np.square(sinVector))) #power of the digital wave, inDB
return outDBSPL1000, power, outDBSPL1000 - vectorDb
def THD(wave, fsHz):
p = []
for i in range (1,7):
_, power, _ = HarmonicPower(wave, fsHz, 1000*i)
p.append(power)
distortionPower = sum(p[1:])
thd = math.sqrt(distortionPower/p[0])
rms = math.sqrt(p[0])
return thd, rms
def loudSpeakerCompressorDb(inDb,T,R,W):
WFinal = W if W >= 0 else 0
if (inDb > (T+WFinal/2)):
outDb = T + (inDb -T) /R
elif (inDb > T-WFinal/2):
outDb=inDb+(1/R-1)*(inDb-(T-WFinal/2))**2/(2*WFinal)
else:
outDb=inDb
return outDb
def microphoneCompressorDb(outDbSpl,T,R,W): #pass correct gain, T, R, W are distinct from loudSpeaker's T, R, and W
WFinal = W if W >= 0 else 0
if (outDbSpl > (T+WFinal/2)):
outDb = T + (outDbSpl -T) /R
elif (outDbSpl > T-WFinal/2):
outDb=outDbSpl+(1/R-1)*(outDbSpl-(T-WFinal/2))**2/(2*WFinal)
else:
outDb=outDbSpl
return outDb
def CompressorDb(inDb,T,R,W): #microphone compressor, rename CompressorDb => microphoneCompressorDb, accept S but convert S to R
# updated Jan 18th, 2024
Q = 1 / R
WFinal = W if W >= 0 else 0
if (inDb >= (T+WFinal/2)):
compressorDb = T + Q *(inDb -T)
elif (inDb >= T-WFinal/2):
compressorDb=inDb - (1 - Q) * (inDb-(T-WFinal/2))**2/(2*WFinal)
else:
compressorDb=inDb
return compressorDb
def CalculateRMSError(inDBValues,outDBSPLValues,backgroundDBSPL,gainDBSPL,T,R,W,componentGainDBSPL):
err = []
for i in range(0,len(inDBValues)):
err.append((outDBSPLValues[i] - SoundLevelModel(inDBValues[i],backgroundDBSPL,gainDBSPL,T,R,W,componentGainDBSPL))**2)
rmsErrorDBSPL=np.sqrt(np.mean(err))
return rmsErrorDBSPL
def CompressorInverseDb(outDb,T,R,W): #accept S but convert S to R
if (outDb > (T+(W/2)/R)):
inDb=T+R*(outDb-T)
elif outDb>(T-W/2):
a=1
b=2*(W/(1/R-1)-(T-W/2))
c=-outDb*2*W/(1/R-1)+(T-W/2)**2
inDb2= -b/2 - math.sqrt(b^2-4*c)/2
inDb = inDb2
else:
inDb=outDb
return inDb
def SoundLevelModel(inDb,backgroundDbSpl,gain_dB,T,R,W,componentGainDBSPL): #include parameter for component gainDbSpl
#currently does not include loudspeaker compression, enhance to 1) apply loudspeaker compression. there will be 2 gains: gain at short distance
#and gain at long distance. make a note on physical data if collected near or far
#0) recording needs to be labeled by near or far
#1) out_power = 10**((CompressorDb(inDb, T_speaker, R_speaker, W_speaker) + gain[i_distance])/10) + 10**(backgroundDbSpl/10)
#2) outDbSpl = 10*math.log10(out_power) #done loudspeaker and background sound
#3) outDbSpl = CompressorDb(outDbSpl, T_mic, R_mic, W_mic) #define S as S=1/R
# outDbSpl=10*math.log10(10**(backgroundDbSpl/10)+10**((inDb+(gainDbSpl - componentGainDBSPL))/10))
# outDbSpl=10*math.log10(10**(backgroundDbSpl/10)+10**((inDb+gainDbSpl)/10))
# updated Jan 18, 2024, removed backgroundDbSpl
compressorDb = CompressorDb(inDb, T, R, W)
outDbSpl = compressorDb + gain_dB
return outDbSpl
def second_largest(arr):
unique_values = set(arr)
sorted_values = sorted(unique_values, reverse=True)
if (len(sorted_values) < 2):
return None
return sorted_values[1]
def lowest_value(arr):
unique_values = set(arr)
sorted_values = sorted(unique_values, reverse=False)
if (len(sorted_values) < 1):
return None
return sorted_values[0]
def SoundLevelCost(x,inDB,outDBSPL,componentGainDBSPL): #include parameter for component gainDbSpl
backgroundDbSpl=x[0]
gainDbSpl=x[1]
T=x[2]
R=x[3]
W=x[4]
cost=0
for i in range(len(inDB)):
cost=cost + (outDBSPL[i] - SoundLevelModel(inDB[i],backgroundDbSpl,gainDbSpl,T,R,W,componentGainDBSPL))**2
#cost=cost + (outDBSPL[i] - SoundLevelModel(inDB[i],backgroundDbSpl,gainDbSpl,T,R,W))**2
if W<0:
cost = cost + 10*len(inDB)*W**2
if W>20:
cost = cost + 10*len(inDB)*(W-20)**2
return cost
def generateSineWave(sampleRate):
start_time = 0
end_time = 1
time = np.arange(start_time, end_time, 1/sampleRate)
theta = 0
frequency = 1000 # Hz
amplitude = 1
return amplitude * \
np.sin(2 * np.pi * frequency * time + theta)
def computeLCalib():
P = np.mean(np.square(recordedSineTone))
lCalib = 79 - 10 * np.log10(P)
def getCalibration(recordedSineTone, sinewave):
# Power of the recorded signal
P = np.mean(np.square(recordedSineTone)) #this is where power is, keep old way to compare
L = 10 * np.log10(P) + lCalib # Sound level in dBSPL = outDBSPL
vectorDb = 10 * np.log10(np.mean(np.square(sinewave))) #power of the digital wave, inDB
return L - vectorDb, P, L, vectorDb
def run_volume_task(recordedSignalJson, sampleRate):
sig = np.array(recordedSignalJson, dtype=np.float32)
sinewave = generateSineWave(sampleRate) # Generate sine wave for comparison
soundGainDbSPL, P, L, vectorDb = getCalibration(sig, sinewave)
return soundGainDbSPL, P, L, vectorDb
def get_model_parameters(inDB,outDBSPL,lCalibFromPeer,componentGainDBSPL):
global lCalib
lCalib = lCalibFromPeer
maxMeasuredDBSPL = np.max(outDBSPL)
summed_gain = 0
gain_count = 0
for i in range(0,len(inDB)):
if inDB[i] <= -20:
summed_gain = summed_gain + (outDBSPL[i] - inDB[i])
gain_count = gain_count + 1
guess_gain = summed_gain/gain_count
T=second_largest(outDBSPL)
guesses=[lowest_value(outDBSPL),guess_gain,T,100,20]
modelGuesses = guesses
guesses=scipy.optimize.fmin(SoundLevelCost,guesses,args=(inDB,outDBSPL,componentGainDBSPL))
rmsError = CalculateRMSError(inDB,outDBSPL,guesses[0],guesses[1],guesses[2],guesses[3],guesses[4],componentGainDBSPL)
return guesses[0], guesses[1], guesses[2], guesses[3], guesses[4], rmsError, modelGuesses #backgroundDBSPL,gainDBSPL,T,R,W,rmsError, initialGuesses
def run_volume_task_nonlinear(recordedSignalJson, sampleRate):
global lCalib
lCalib = 0
sig = np.array(recordedSignalJson, dtype=np.float32)
# Perform FFT
fft_result = fft(sig)
fft_freq = np.fft.fftfreq(len(fft_result), 1/sampleRate) # Frequency values for the FFT result
# Define the frequency range
min_frequency = 0.9 * 1000
max_frequency = 1.1 * 1000
# Filter the frequency values within the specified range
mask = (fft_freq >= min_frequency) & (fft_freq <= max_frequency)
print('length of mask', len(mask))
print('min_frequency', min_frequency)
print('max_frequency', max_frequency)
print('min fft_freq', min(fft_freq))
print('max fft_freq', max(fft_freq))
masked_fft_result = fft_result[mask]
if len(masked_fft_result) == 0:
peak_frequency_within_range = 1000
else:
# Find the peak frequency within the specified range
# Apply the mask to the FFT result to get values within the specified range
peak_index_within_range = np.argmax(np.abs(masked_fft_result))
peak_frequency_within_range = np.abs(fft_freq[mask][peak_index_within_range])
# Find the peak frequency
# peak_index = np.argmax(np.abs(fft_result))
# peak_frequency = np.abs(fft_freq[peak_index])
sampleRate_2 = (1000/peak_frequency_within_range) * sampleRate
sinewave = generateSineWave(sampleRate_2) # Generate sine wave for comparison
soundGainDbSPL, P, L, vectorDb = getCalibration(sig, sinewave)
outDBSPL1000, P1000, soundGainDbSPL1000 = HarmonicPower(sig,sampleRate_2,1000)
thd, rms = THD(sig,sampleRate_2)
print("Sample Rate 2: " + str(sampleRate_2))
return soundGainDbSPL, P, L, vectorDb, outDBSPL1000, P1000, thd, rms, soundGainDbSPL1000