-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjama_qr.h
326 lines (264 loc) · 7.18 KB
/
jama_qr.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
#ifndef JAMA_QR_H
#define JAMA_QR_H
#include "tnt_array1d.h"
#include "tnt_array2d.h"
#include "tnt_math_utils.h"
namespace JAMA
{
/**
<p>
Classical QR Decompisition:
for an m-by-n matrix A with m >= n, the QR decomposition is an m-by-n
orthogonal matrix Q and an n-by-n upper triangular matrix R so that
A = Q*R.
<P>
The QR decompostion always exists, even if the matrix does not have
full rank, so the constructor will never fail. The primary use of the
QR decomposition is in the least squares solution of nonsquare systems
of simultaneous linear equations. This will fail if isFullRank()
returns 0 (false).
<p>
The Q and R factors can be retrived via the getQ() and getR()
methods. Furthermore, a solve() method is provided to find the
least squares solution of Ax=b using the QR factors.
<p>
(Adapted from JAMA, a Java Matrix Library, developed by jointly
by the Mathworks and NIST; see http://math.nist.gov/javanumerics/jama).
*/
template <class Real>
class QR {
/** Array for internal storage of decomposition.
@serial internal array storage.
*/
TNT::Array2D<Real> QR_;
/** Row and column dimensions.
@serial column dimension.
@serial row dimension.
*/
int m, n;
/** Array for internal storage of diagonal of R.
@serial diagonal of R.
*/
TNT::Array1D<Real> Rdiag;
public:
/**
Create a QR factorization object for A.
@param A rectangular (m>=n) matrix.
*/
QR(const TNT::Array2D<Real> &A) /* constructor */
{
QR_ = A.copy();
m = A.dim1();
n = A.dim2();
Rdiag = TNT::Array1D<Real>(n);
int i=0, j=0, k=0;
// Main loop.
for (k = 0; k < n; k++) {
// Compute 2-norm of k-th column without under/overflow.
Real nrm = 0;
for (i = k; i < m; i++) {
nrm = TNT::hypot(nrm,QR_[i][k]);
}
if (nrm != 0.0) {
// Form k-th Householder vector.
if (QR_[k][k] < 0) {
nrm = -nrm;
}
for (i = k; i < m; i++) {
QR_[i][k] /= nrm;
}
QR_[k][k] += 1.0;
// Apply transformation to remaining columns.
for (j = k+1; j < n; j++) {
Real s = 0.0;
for (i = k; i < m; i++) {
s += QR_[i][k]*QR_[i][j];
}
s = -s/QR_[k][k];
for (i = k; i < m; i++) {
QR_[i][j] += s*QR_[i][k];
}
}
}
Rdiag[k] = -nrm;
}
}
/**
Flag to denote the matrix is of full rank.
@return 1 if matrix is full rank, 0 otherwise.
*/
int isFullRank() const
{
for (int j = 0; j < n; j++)
{
if (Rdiag[j] == 0)
return 0;
}
return 1;
}
/**
Retreive the Householder vectors from QR factorization
@returns lower trapezoidal matrix whose columns define the reflections
*/
TNT::Array2D<Real> getHouseholder (void) const
{
TNT::Array2D<Real> H(m,n);
/* note: H is completely filled in by algorithm, so
initializaiton of H is not necessary.
*/
for (int i = 0; i < m; i++)
{
for (int j = 0; j < n; j++)
{
if (i >= j) {
H[i][j] = QR_[i][j];
} else {
H[i][j] = 0.0;
}
}
}
return H;
}
/** Return the upper triangular factor, R, of the QR factorization
@return R
*/
TNT::Array2D<Real> getR() const
{
TNT::Array2D<Real> R(n,n);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (i < j) {
R[i][j] = QR_[i][j];
} else if (i == j) {
R[i][j] = Rdiag[i];
} else {
R[i][j] = 0.0;
}
}
}
return R;
}
/**
Generate and return the (economy-sized) orthogonal factor
@param Q the (ecnomy-sized) orthogonal factor (Q*R=A).
*/
TNT::Array2D<Real> getQ() const
{
int i=0, j=0, k=0;
TNT::Array2D<Real> Q(m,n);
for (k = n-1; k >= 0; k--) {
for (i = 0; i < m; i++) {
Q[i][k] = 0.0;
}
Q[k][k] = 1.0;
for (j = k; j < n; j++) {
if (QR_[k][k] != 0) {
Real s = 0.0;
for (i = k; i < m; i++) {
s += QR_[i][k]*Q[i][j];
}
s = -s/QR_[k][k];
for (i = k; i < m; i++) {
Q[i][j] += s*QR_[i][k];
}
}
}
}
return Q;
}
/** Least squares solution of A*x = b
@param B m-length array (vector).
@return x n-length array (vector) that minimizes the two norm of Q*R*X-B.
If B is non-conformant, or if QR.isFullRank() is false,
the routine returns a null (0-length) vector.
*/
TNT::Array1D<Real> solve(const TNT::Array1D<Real> &b) const
{
if (b.dim1() != m) /* arrays must be conformant */
return TNT::Array1D<Real>();
if ( !isFullRank() ) /* matrix is rank deficient */
{
return TNT::Array1D<Real>();
}
TNT::Array1D<Real> x = b.copy();
// Compute Y = transpose(Q)*b
for (int k = 0; k < n; k++)
{
Real s = 0.0;
for (int i = k; i < m; i++)
{
s += QR_[i][k]*x[i];
}
s = -s/QR_[k][k];
for (int i = k; i < m; i++)
{
x[i] += s*QR_[i][k];
}
}
// Solve R*X = Y;
for (int k = n-1; k >= 0; k--)
{
x[k] /= Rdiag[k];
for (int i = 0; i < k; i++) {
x[i] -= x[k]*QR_[i][k];
}
}
/* return n x nx portion of X */
TNT::Array1D<Real> x_(n);
for (int i=0; i<n; i++)
x_[i] = x[i];
return x_;
}
/** Least squares solution of A*X = B
@param B m x k Array (must conform).
@return X n x k Array that minimizes the two norm of Q*R*X-B. If
B is non-conformant, or if QR.isFullRank() is false,
the routine returns a null (0x0) array.
*/
TNT::Array2D<Real> solve(const TNT::Array2D<Real> &B) const
{
if (B.dim1() != m) /* arrays must be conformant */
return TNT::Array2D<Real>(0,0);
if ( !isFullRank() ) /* matrix is rank deficient */
{
return TNT::Array2D<Real>(0,0);
}
int nx = B.dim2();
TNT::Array2D<Real> X = B.copy();
int i=0, j=0, k=0;
// Compute Y = transpose(Q)*B
for (k = 0; k < n; k++) {
for (j = 0; j < nx; j++) {
Real s = 0.0;
for (i = k; i < m; i++) {
s += QR_[i][k]*X[i][j];
}
s = -s/QR_[k][k];
for (i = k; i < m; i++) {
X[i][j] += s*QR_[i][k];
}
}
}
// Solve R*X = Y;
for (k = n-1; k >= 0; k--) {
for (j = 0; j < nx; j++) {
X[k][j] /= Rdiag[k];
}
for (i = 0; i < k; i++) {
for (j = 0; j < nx; j++) {
X[i][j] -= X[k][j]*QR_[i][k];
}
}
}
/* return n x nx portion of X */
TNT::Array2D<Real> X_(n,nx);
for (i=0; i<n; i++)
for (j=0; j<nx; j++)
X_[i][j] = X[i][j];
return X_;
}
};
}
// namespace JAMA
#endif
// JAMA_QR__H