-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjama_cholesky.h
258 lines (202 loc) · 5.11 KB
/
jama_cholesky.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
#ifndef JAMA_CHOLESKY_H
#define JAMA_CHOLESKY_H
#include "math.h"
/* needed for sqrt() below. */
namespace JAMA
{
using namespace TNT;
/**
<P>
For a symmetric, positive definite matrix A, this function
computes the Cholesky factorization, i.e. it computes a lower
triangular matrix L such that A = L*L'.
If the matrix is not symmetric or positive definite, the function
computes only a partial decomposition. This can be tested with
the is_spd() flag.
<p>Typical usage looks like:
<pre>
Array2D<double> A(n,n);
Array2D<double> L;
...
Cholesky<double> chol(A);
if (chol.is_spd())
L = chol.getL();
else
cout << "factorization was not complete.\n";
</pre>
<p>
(Adapted from JAMA, a Java Matrix Library, developed by jointly
by the Mathworks and NIST; see http://math.nist.gov/javanumerics/jama).
*/
template <class Real>
class Cholesky
{
Array2D<Real> L_; // lower triangular factor
int isspd; // 1 if matrix to be factored was SPD
public:
Cholesky();
Cholesky(const Array2D<Real> &A);
Array2D<Real> getL() const;
Array1D<Real> solve(const Array1D<Real> &B);
Array2D<Real> solve(const Array2D<Real> &B);
int is_spd() const;
};
template <class Real>
Cholesky<Real>::Cholesky() : L_(0,0), isspd(0) {}
/**
@return 1, if original matrix to be factored was symmetric
positive-definite (SPD).
*/
template <class Real>
int Cholesky<Real>::is_spd() const
{
return isspd;
}
/**
@return the lower triangular factor, L, such that L*L'=A.
*/
template <class Real>
Array2D<Real> Cholesky<Real>::getL() const
{
return L_;
}
/**
Constructs a lower triangular matrix L, such that L*L'= A.
If A is not symmetric positive-definite (SPD), only a
partial factorization is performed. If is_spd()
evalutate true (1) then the factorizaiton was successful.
*/
template <class Real>
Cholesky<Real>::Cholesky(const Array2D<Real> &A)
{
int m = A.dim1();
int n = A.dim2();
isspd = (m == n);
if (m != n)
{
L_ = Array2D<Real>(0,0);
return;
}
L_ = Array2D<Real>(n,n);
// Main loop.
for (int j = 0; j < n; j++)
{
double d = 0.0;
for (int k = 0; k < j; k++)
{
Real s = 0.0;
for (int i = 0; i < k; i++)
{
s += L_[k][i]*L_[j][i];
}
L_[j][k] = s = (A[j][k] - s)/L_[k][k];
d = d + s*s;
isspd = isspd && (A[k][j] == A[j][k]);
}
d = A[j][j] - d;
isspd = isspd && (d > 0.0);
L_[j][j] = sqrt(d > 0.0 ? d : 0.0);
for (int k = j+1; k < n; k++)
{
L_[j][k] = 0.0;
}
}
}
/**
Solve a linear system A*x = b, using the previously computed
cholesky factorization of A: L*L'.
@param B A Matrix with as many rows as A and any number of columns.
@return x so that L*L'*x = b. If b is nonconformat, or if A
was not symmetric posidtive definite, a null (0x0)
array is returned.
*/
template <class Real>
Array1D<Real> Cholesky<Real>::solve(const Array1D<Real> &b)
{
int n = L_.dim1();
if (b.dim1() != n)
return Array1D<Real>();
Array1D<Real> x = b.copy();
// Solve L*y = b;
for (int k = 0; k < n; k++)
{
for (int i = 0; i < k; i++)
x[k] -= x[i]*L_[k][i];
x[k] /= L_[k][k];
}
// Solve L'*X = Y;
for (int k = n-1; k >= 0; k--)
{
for (int i = k+1; i < n; i++)
x[k] -= x[i]*L_[i][k];
x[k] /= L_[k][k];
}
return x;
}
/**
Solve a linear system A*X = B, using the previously computed
cholesky factorization of A: L*L'.
@param B A Matrix with as many rows as A and any number of columns.
@return X so that L*L'*X = B. If B is nonconformat, or if A
was not symmetric posidtive definite, a null (0x0)
array is returned.
*/
template <class Real>
Array2D<Real> Cholesky<Real>::solve(const Array2D<Real> &B)
{
int n = L_.dim1();
if (B.dim1() != n)
return Array2D<Real>();
Array2D<Real> X = B.copy();
int nx = B.dim2();
// Cleve's original code
#if 0
// Solve L*Y = B;
for (int k = 0; k < n; k++) {
for (int i = k+1; i < n; i++) {
for (int j = 0; j < nx; j++) {
X[i][j] -= X[k][j]*L_[k][i];
}
}
for (int j = 0; j < nx; j++) {
X[k][j] /= L_[k][k];
}
}
// Solve L'*X = Y;
for (int k = n-1; k >= 0; k--) {
for (int j = 0; j < nx; j++) {
X[k][j] /= L_[k][k];
}
for (int i = 0; i < k; i++) {
for (int j = 0; j < nx; j++) {
X[i][j] -= X[k][j]*L_[k][i];
}
}
}
#endif
// Solve L*y = b;
for (int j=0; j< nx; j++)
{
for (int k = 0; k < n; k++)
{
for (int i = 0; i < k; i++)
X[k][j] -= X[i][j]*L_[k][i];
X[k][j] /= L_[k][k];
}
}
// Solve L'*X = Y;
for (int j=0; j<nx; j++)
{
for (int k = n-1; k >= 0; k--)
{
for (int i = k+1; i < n; i++)
X[k][j] -= X[i][j]*L_[i][k];
X[k][j] /= L_[k][k];
}
}
return X;
}
}
// namespace JAMA
#endif
// JAMA_CHOLESKY_H