-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathsample.py
245 lines (198 loc) · 11.1 KB
/
sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import os
import argparse
import copy
import json
from tqdm.auto import tqdm
from torch_geometric.loader import DataLoader
import torch
from repo.datasets.pl import get_pl_dataset
from repo.models import get_model
from repo.utils.misc import *
from repo.utils.molecule.constants import *
import os
from repo.tools.rdkit_utils import reconstruct_mol, evaluate_validity, save_mol, atom_from_fg, obabel_recover_bond
from repo.utils.data import recursive_to
def split_batch_into_samples(batch, mode='add_aromatic'):
batch_idx = batch[-1]
if batch_idx.numel() == 0:
return []
B = batch_idx.max() + 1
batch_split = []
for i in range(B):
idx = (batch_idx == i)
sample = {}
sample['pos'] = batch[0].cpu()[idx].tolist()
sample['type'] = batch[1].cpu()[idx].numpy()
if len(sample['type'].shape) == 2:
sample['type'] = sample['type'].argmax(axis=-1)
sample['atom'] = get_atomic_number_from_index(sample['type'], mode)
sample['aromatic'] = is_aromatic_from_index(sample['type'], mode)
batch_split.append(sample)
return batch_split
def split_batch_into_samples_fg(batch, mode=None):
batch_idx = batch[-1]
B = batch_idx.max() + 1
batch_split = []
for i in range(B):
idx = (batch_idx == i)
sample = {}
sample['pos_center'] = batch[0].cpu()[idx].tolist()
sample['fg_type'] = batch[1].cpu()[idx].numpy()
if len(sample['fg_type'].shape) == 2:
sample['fg_type'] = sample['fg_type'].argmax(axis=-1)
sample['orientation'] = batch[2].cpu()[idx].numpy()
batch_split.append(sample)
return batch_split
def translate(result, translation):
result_pos = result[0].cpu()
result_pos += translation.cpu()
return [result_pos] + [result[k+1] for k in range(len(result) - 1)]
# python sample.py --config ./configs/denovo/test/d3fg_fg.yml --out_root ./results/denovo/ --tag context
# python sample.py --config ./configs/denovo/test/d3fg_linker.yml --out_root ./results/denovo/
# python sample.py --config ./configs/denovo/test/diffbp.yml --out_root ./results/denovo/
# python sample.py --config ./configs/denovo/test/diffsbdd.yml --out_root ./results/denovo/
# python sample.py --config ./configs/denovo/test/targetdiff.yml --out_root ./results/denovo/
# python sample.py --config ./configs/denovo/test/flag.yml --out_root ./results/denovo/
# python sample.py --config ./configs/denovo/test/graphbp.yml --out_root ./results/denovo/
# python sample.py --config ./configs/denovo/test/pocket2mol.yml --out_root ./results/denovo/
# python sample.py --config ./configs/frag/test/pocket2mol.yml --out_root ./results/frag/
# python sample.py --config ./configs/frag/test/graphbp.yml --out_root ./results/frag/
# python sample.py --config ./configs/frag/test/targetdiff.yml --out_root ./results/frag/
# python sample.py --config ./configs/frag/test/diffbp.yml --out_root ./results/frag/
# python sample.py --config ./configs/frag/test/diffsbdd.yml --out_root ./results/frag/
# python sample.py --config ./configs/linker/test/pocket2mol.yml --out_root ./results/linker/
# python sample.py --config ./configs/linker/test/graphbp.yml --out_root ./results/linker/
# python sample.py --config ./configs/linker/test/targetdiff.yml --out_root ./results/linker/
# python sample.py --config ./configs/linker/test/diffbp.yml --out_root ./results/linker/
# python sample.py --config ./configs/linker/test/diffsbdd.yml --out_root ./results/linker/
# python sample.py --config ./configs/scaffold/test/pocket2mol.yml --out_root ./results/scaffold/
# python sample.py --config ./configs/scaffold/test/graphbp.yml --out_root ./results/scaffold/
# python sample.py --config ./configs/scaffold/test/targetdiff.yml --out_root ./results/scaffold/
# python sample.py --config ./configs/scaffold/test/diffbp.yml --out_root ./results/scaffold/
# python sample.py --config ./configs/scaffold/test/diffsbdd.yml --out_root ./results/scaffold/
# python sample.py --config ./configs/sidechain/test/pocket2mol.yml --out_root ./results/sidechain/
# python sample.py --config ./configs/sidechain/test/graphbp.yml --out_root ./results/sidechain/
# python sample.py --config ./configs/sidechain/test/targetdiff.yml --out_root ./results/sidechain/
# python sample.py --config ./configs/sidechain/test/diffbp.yml --out_root ./results/sidechain/
# python sample.py --config ./configs/sidechain/test/diffsbdd.yml --out_root ./results/sidechain/
# python sample.py --config ./configs/denovo/casestudy/targetdiff.yml --out_root ./results/denovo/ --tag casestudy
# python sample.py --config ./configs/denovo/casestudy/diffbp.yml --out_root ./results/denovo/ --tag casestudy
# python sample.py --config ./configs/denovo/casestudy/diffsbdd.yml --out_root ./results/denovo/ --tag casestudy
# python sample.py --config ./configs/denovo/casestudy/flag.yml --out_root ./results/denovo/ --tag casestudy
# python sample.py --config ./configs/denovo/casestudy/graphbp.yml --out_root ./results/denovo/ --tag casestudy
# python sample.py --config ./configs/denovo/casestudy/pocket2mol.yml --out_root ./results/denovo/ --tag casestudy
# python sample.py --config ./configs/denovo/casestudy/d3fg_fg.yml --out_root ./results/denovo/ --tag casestudy_context
# python sample.py --config ./configs/denovo/casestudy/d3fg_linker.yml --out_root ./results/denovo/ --tag casestudy
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--index', type=int, default=0)
parser.add_argument('-c', '--config', type=str, default='./configs/denovo/test/diffsbdd.yml')
parser.add_argument('-o', '--out_root', type=str, default='./results/denovo/')
parser.add_argument('-t', '--tag', type=str, default='selftrain')
parser.add_argument('-s', '--seed', type=int, default=2024)
parser.add_argument('-d', '--device', type=str, default='cuda')
parser.add_argument('-b', '--batch_size', type=int, default=16)
parser.add_argument('-ckpt', '--checkpoint', type=str, default='1')
parser.add_argument('--threshold', type=int, default=-1)
parser.add_argument('--threshold_ratio', type=float, default=0.8)
args = parser.parse_args()
# Load configs
config, config_name = load_config(args.config)
config.model.checkpoint = os.path.join(
"/".join(config.model.checkpoint.split('/')[:4]),
args.tag,
'checkpoints',
args.checkpoint + '.pt'
)
if 'fg' not in config.model.type:
from repo.utils.configuration import set_num_atom_type, set_num_bond_type
set_num_atom_type(config)
set_num_bond_type(config)
else:
from repo.utils.configuration import set_num_fg_type
set_num_fg_type(config)
seed_all(args.seed if args.seed is not None else config.sampling.seed)
# Testset
datasets = get_pl_dataset(config.data.test)
dataset = datasets['test']
dr = os.path.join(args.out_root, config_name)
if not os.path.exists(dr):
os.makedirs(dr, exist_ok=True)
mark = 0
log_dir = get_new_log_dir(dr, prefix='', tag=args.tag)
logger = get_logger('sample', log_dir)
# Load checkpoint and model
logger.info('Loading model config and checkpoints: %s' % (config.model.checkpoint))
ckpt = torch.load(config.model.checkpoint, map_location='cpu')
cfg_ckpt = ckpt['config']
model = get_model(cfg_ckpt.model).to(args.device)
lsd = model.load_state_dict(ckpt['model'])
logger.info(str(lsd))
for i in range(mark, len(dataset)):
args.index = i
get_structure = lambda: dataset[args.index]
get_raw_structure = lambda: dataset.dataset.get_raw(dataset.indices[args.index])
# Logging
raw_strcuture_ = get_raw_structure()
structure_id = raw_strcuture_['entry'][0][:-4]
save_dir = os.path.join(log_dir, '%s' % (structure_id))
os.makedirs(save_dir, exist_ok=True)
logger.info('Data ID: %s' % structure_id)
data_native = {'entry': raw_strcuture_['entry']}
data_list_repeat = [get_structure() for _ in range(config.sampling.num_samples)]
batch_size = args.batch_size if config.data.get('batch_size', None) is None else config.data.batch_size
loader = DataLoader(PygDatasetFromList(data_list_repeat),
batch_size=batch_size,
shuffle=False,
follow_batch=config.data.get('follow_batch', []))
count = 0
mol_part_list = []
for batch in tqdm(loader, desc=structure_id, dynamic_ncols=True):
torch.set_grad_enabled(False)
model.eval()
try:
batch = batch.to(args.device)
except:
batch = recursive_to(batch, args.device)
traj_batch = model.sample(batch)
if len(traj_batch) == 0: continue
if config.sampling.translate:
result_batch = translate(traj_batch[0], batch.protein_translation[:1])
else:
result_batch = traj_batch[0]
if 'fg' in config.model.type:
result_split = split_batch_into_samples_fg(result_batch, mode=config.mode)
else:
result_split = split_batch_into_samples(result_batch, mode=config.mode)
if config.get('reconstruct', None) is not None:
for result in result_split:
try:
try:
mol = reconstruct_mol(result['pos'],
result['atom'],
result['aromatic'],
basic_mode=config.reconstruct.basic_mode)
except:
mol = obabel_recover_bond(result['pos'],
result['atom'])
mol, success = evaluate_validity(mol, args.threshold, args.threshold_ratio)
if success:
count += 1
data = {'pos': np.array(result['pos']),
'atom': np.array(result['atom']),
'entry': data_native['entry']}
torch.save(data, os.path.join(save_dir, 'sample_%04d.pt' % count))
save_mol(mol, os.path.join(save_dir, 'sample_%04d.sdf' % count))
except:
continue
elif config.get('fg2mol', None) is not None:
for result in result_split:
part_mol = atom_from_fg(result['pos_center'],
result['orientation'],
result['fg_type'])
mol_part_list.append(part_mol)
if config.get('fg2mol', None) is not None:
torch.save(mol_part_list, os.path.join(save_dir, 'gen_ctx_pool_%04d.pt' % len(mol_part_list)))
torch.save(mol_part_list, os.path.join(save_dir, 'gen_ctx_pool_raw.pt'))
if __name__ == '__main__':
main()