From c36136b7e8b09cee34373d084ff1e6e3a0497eb8 Mon Sep 17 00:00:00 2001 From: Konrad Mayer Date: Tue, 12 Sep 2023 10:04:57 +0000 Subject: [PATCH] REF: generalize psd code --- dev/postprocessing/plot_results.R | 31 ++++- .../spatial_structures/compare_pds.R | 120 +++++++++--------- 2 files changed, 82 insertions(+), 69 deletions(-) diff --git a/dev/postprocessing/plot_results.R b/dev/postprocessing/plot_results.R index 32ad185..4b76253 100644 --- a/dev/postprocessing/plot_results.R +++ b/dev/postprocessing/plot_results.R @@ -1,3 +1,11 @@ +#!/usr/bin/env Rscript + +################################################################## +#Description : plot fields (era5, cerra, downscaled and +# difference) and PSD for individual timesteps +#Author : Konrad Mayer +################################################################## + library(here) library(lubridate) library(stars) @@ -24,6 +32,14 @@ replace_na <- function(m, replacement = 0) { m[is.na(m)] <- replacement m } + +do_psd <- function(x) { + tmp <- replace_na(truncate_to_square(as.matrix(x[[1]]))) + psd <- radial.psd(tmp, plot = FALSE, scaled = FALSE, normalized = FALSE) + max_dist <- sqrt(sum((ceiling(dim(tmp)/2)-1)^2)) + mutate(psd, wavenumber = wavenumber / max_dist) +} + # main per_lead_time <- function(lead_time) { @@ -59,20 +75,21 @@ per_lead_time <- function(lead_time) { theme_minimal() ), list(map( - list(era5_regridded, cerra, downscaled) %>% map(~filter(.x %>%.[1, 3:238,6:160], time == eval_datetime)), - ~{radial.psd(replace_na(truncate_to_square(as.matrix((st_apply(.x, c("x", "y"), mean)[[1]])))), plot = FALSE, normalized = FALSE, scaled = FALSE)} + list(era5_regridded, cerra, downscaled) %>% map(~filter(.x %>%.[1, 3:238,6:160], time == eval_datetime)[drop = TRUE]), + ~{do_psd(st_apply(.x, c("x", "y"), mean))} ) %>% setNames(c("era5", "cerra", "samos")) %>% bind_rows(.id = "model") %>% ggplot(aes(wavenumber, r_spectrum, lty = model)) + - geom_line() + - theme_minimal() + - scale_y_log10() + annotation_logticks() + scale_x_log10() + geom_line() + + theme_minimal(20) + + scale_y_log10() + annotation_logticks() + scale_x_log10(sec.axis = sec_axis(trans = ~ (.^-1), name = "wavelength")) + + labs(y = "Power") )) - wrap_plots(plts[1:4], ncol = 2) / plts[[5]] + plot_annotation(title = eval_datetime) - ggsave(here(glue("plt/SAMOS/{format(eval_datetime, '%Y%m%dT%H%M%S')}_testset.pdf")), height = 14, width = 10) + wrap_plots(plts[1:4], ncol = 2) | plts[[5]] + plot_annotation(title = eval_datetime) + ggsave(here(glue("plt/SAMOS/{format(eval_datetime, '%Y%m%dT%H%M%S')}_testset.pdf")), height = 6, width = 20) } diff --git a/dev/verification/spatial_structures/compare_pds.R b/dev/verification/spatial_structures/compare_pds.R index bed8ae4..b11cc66 100644 --- a/dev/verification/spatial_structures/compare_pds.R +++ b/dev/verification/spatial_structures/compare_pds.R @@ -1,3 +1,10 @@ +#!/usr/bin/env Rscript + +################################################################## +#Description : power spectral density analysis +#Author : Konrad Mayer +################################################################## + library(stars) library(purrr) library(here) @@ -33,102 +40,91 @@ replace_na <- function(m, replacement = 0) { m } +do_psd <- function(x) { + tmp <- replace_na(truncate_to_square(as.matrix(x[[1]]))) + psd <- radial.psd(tmp, plot = FALSE, scaled = FALSE, normalized = FALSE) + max_dist <- sqrt(sum((ceiling(dim(tmp)/2)-1)^2)) + mutate(psd, wavenumber = wavenumber / max_dist) +} + +drop_units <- function(x) { + tryCatch( + units::drop_units(x), + error = function(e) { + return(x) + } + ) +} # main ------------------------------------------------------------------------- dothis <- function(lead_time) { lead_time <- str_pad(lead_time, 2, pad = "0") # load datasets (crop a bit as SAMOS baseline has some values NA around) - cerra <- read_stars(here(glue("dat/TESTING/PREPROCESSED/CERRA/t2m_cerra_{lead_time}.nc"))) %>% - setNames("cerra") %>% - .[1, 3:238,6:160] - downscaled <- read_stars(here(glue("dat/TESTING/SAMOS/postprocessed/samos-postprocessed_{lead_time}.nc"))) %>% - setNames("samos") %>% - .[1, 3:238,6:160] - era5 <- read_stars(here(glue("dat/TESTING/PREPROCESSED/ERA5_regridded/t2m_era5_{lead_time}.nc"))) %>% - setNames("era5") %>% - .[1, 3:238,6:160] - - timesteps <- seq_len(dim(cerra)["time"]) + datasets <- c( + cerra = "dat/TESTING/PREPROCESSED/CERRA/t2m_cerra_{lead_time}.nc", + downscaled = "dat/TESTING/SAMOS/postprocessed/samos-postprocessed_{lead_time}.nc", + era5 = "dat/TESTING/PREPROCESSED/ERA5_regridded/t2m_era5_{lead_time}.nc" + ) + dat <- map2(datasets, names(datasets), + ~setNames(drop_units(read_stars(here(glue(.x)))), .y)[1, 3:238,6:160]) # data gets truncated to get rid of NA values on two of the edges caused by CDO bilinear interpolation + + timesteps <- seq_len(dim(dat[[1]])["time"]) #overall - psd_cerra_overall <- radial.psd(replace_na(truncate_to_square(as.matrix((st_apply(cerra, c("x", "y"), mean)[[1]])))), plot = FALSE, scaled = FALSE, normalized = FALSE) - psd_downscaled_overall <- radial.psd(replace_na(truncate_to_square(as.matrix((st_apply(downscaled, c("x", "y"), mean)[[1]])))), plot = FALSE, scaled = FALSE, normalized = FALSE) - psd_era5_overall <- radial.psd(replace_na(truncate_to_square(as.matrix((st_apply(era5, c("x", "y"), mean)[[1]])))), plot = FALSE, scaled = FALSE, normalized = FALSE) - psd_overall <- bind_rows(list(cerra = psd_cerra_overall, downscaled = psd_downscaled_overall, era5 = psd_era5_overall), .id = "model") - + psd_overall <- map(dat, + ~do_psd(st_apply(.x, c("x", "y"), mean))) %>% + bind_rows(.id = "model") psd_overall %>% ggplot(aes(wavenumber, r_spectrum, lty = model)) + geom_line() + - theme_minimal() + - scale_y_log10() + scale_x_log10() + annotation_logticks() -ggsave(here(glue("plt/PSD/radialPSD_samos_leadtime{lead_time}_overall.pdf"))) + theme_minimal(20) + + scale_y_log10() + scale_x_log10(sec.axis = sec_axis(trans = ~ (.^-1), name = "wavelength")) + annotation_logticks() + + labs(y = "Power") + ggsave(here(glue("plt/PSD/radialPSD_samos_leadtime{lead_time}_overall.pdf")), width = 10, height = 6) - # loop over timesteps and calculate mean psd - psd_cerra <- list() - psd_ds <- list() - psd_era5 <- list() - - for (i in seq_along(timesteps)){ - psd_cerra[[i]] <- radial.psd(replace_na(truncate_to_square(as.matrix(units::drop_units(cerra[[1]][,,timesteps[i]])))), plot = FALSE)#, scaled = FALSE, normalized = FALSE) - psd_ds[[i]] <- radial.psd(replace_na(truncate_to_square(as.matrix(downscaled[[1]][,,timesteps[i]]))), plot = FALSE)#, scaled = FALSE, normalized = FALSE) - psd_era5[[i]] <- radial.psd(replace_na(truncate_to_square(as.matrix(era5[[1]][,,timesteps[i]]))), plot = FALSE)#, scaled = FALSE, normalized = FALSE) - } + # loop over timesteps and calculate mean psd + psd_timesteps <- map(dat, function(ds) { + map(timesteps, function(ts) do_psd(ds[,,,ts, drop = TRUE])) + }) # common dataframe - plotdat <- bind_rows(list( - cerra = psd_cerra |> - setNames(timesteps) |> - bind_rows(.id = "timesteps"), - samos = psd_ds |> - setNames(timesteps) |> - bind_rows(.id = "timesteps"), - era5 = psd_era5 |> - setNames(timesteps) |> - bind_rows(.id = "timesteps") - ), .id = "dataset") - + plotdat <- psd_timesteps %>% + map(~bind_rows(setNames(.x, timesteps), .id = "timesteps")) %>% + bind_rows(.id = "dataset") + # plot plotdat %>% ggplot(aes(x = wavenumber, y = r_spectrum, color = dataset, group = dataset)) + - # stat_smooth( - # geom="ribbon", - # aes(ymax = after_stat(y) + 1, - # ymin = after_stat(y) - 1, - # fill = dataset), - # alpha = 0.1, linetype = 0 - # ) + - # geom_smooth(se = FALSE)+ geom_interval() + - theme_minimal() + - scale_y_log10() + scale_x_log10() + annotation_logticks() + theme_minimal(20) + + scale_y_log10() + scale_x_log10(sec.axis = sec_axis(trans = ~ (.^-1), name = "wavelength")) + annotation_logticks() + + labs(y = "Power") - ggsave(here(glue("plt/PSD/radialPSD_samos_leadtime{lead_time}_distribution.pdf"))) + ggsave(here(glue("plt/PSD/radialPSD_samos_leadtime{lead_time}_distribution.pdf")), width = 10, height = 6) # aggregate to seasons and calculate PSD per season seasons <- list(DJF = c(12, 1, 2), MAM = 3:5, JJA = 6:8, SON = 9:11) per_season <- function(months) { - cerra_season <- st_apply(cerra %>% filter(lubridate::month(time) %in% months), c("x", "y"), mean) - downscaled_season <- st_apply(downscaled %>% filter(lubridate::month(time) %in% months), c("x", "y"), mean) - era5_season <- st_apply(era5 %>% filter(lubridate::month(time) %in% months), c("x", "y"), mean) - psd_cerra_season <- radial.psd(replace_na(truncate_to_square(as.matrix((cerra_season[[1]])))), plot = FALSE)#, scaled = FALSE, normalized = FALSE) - psd_downscaled_season <- radial.psd(replace_na(truncate_to_square(as.matrix((downscaled_season[[1]])))), plot = FALSE)#, scaled = FALSE, normalized = FALSE) - psd_era5_season <- radial.psd(replace_na(truncate_to_square(as.matrix((era5_season[[1]])))), plot = FALSE)#, scaled = FALSE, normalized = FALSE) - bind_rows(list(cerra = psd_cerra_season, downscaled = psd_downscaled_season, era5 = psd_era5_season), .id = "model") + map(dat, ~do_psd(st_apply(.x %>% filter(lubridate::month(time) %in% months), c("x", "y"), mean))) %>% + bind_rows(.id = "model") } + psd_season <- map(seasons, per_season) psd_season %>% bind_rows(.id = "season") %>% ggplot(aes(wavenumber, r_spectrum, color = season, lty = model)) + geom_line() + - theme_minimal() + - scale_y_log10() + scale_x_log10() + annotation_logticks() - ggsave(here(glue("plt/PSD/radialPSD_samos_leadtime{lead_time}_season.pdf"))) + theme_minimal(20) + + scale_y_log10() + scale_x_log10(sec.axis = sec_axis(trans = ~ (.^-1), name = "wavelength")) + annotation_logticks() + + labs(y = "Power") + + ggsave(here(glue("plt/PSD/radialPSD_samos_leadtime{lead_time}_season.pdf")), width = 10, height = 6) } lead_times <- seq(0, 21, by = 3)