forked from schufo/plla-tisvs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
02_preprocessing_timit_cmu_phonemes.py
180 lines (130 loc) · 6.46 KB
/
02_preprocessing_timit_cmu_phonemes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
"""
Save timit text as sequence of CMU phonemes with space character between words
represented by their indexes in the vocabulary. The term CMU phonemes refers to
APRAbet phonemes obtained at http://www.speech.cs.cmu.edu/tools/lextool.html.
Requires dicts/timit_word2cmu_phonemes.pickle.
"""
import numpy as np
import torch
import timit_utils as tu
import os
import pickle
import sys
# insert path to your TIMIT corpus here
corpus = tu.Corpus('../Datasets/TIMIT/TIMIT/TIMIT')
timit_training_set = corpus.train
timit_test_set = corpus.test
def get_timit_train_sentence(idx):
# the training set for this project comprises the first 4320 sentences of the TIMIT training partition
# the persons are not sorted by dialect regions when accessed with .person_by_index, which ensures that all
# dialect regions are represented in both the training and validation set
person_idx = int(np.floor(idx / 10))
person = timit_training_set.person_by_index(person_idx)
sentence_idx = idx % 10
sentence = person.sentence_by_index(sentence_idx)
audio = sentence.raw_audio
words = sentence.words_df.index.values
word_onsets = sentence.words_df['start'].values
phonemes = sentence.phones_df.index.values
return audio, words, phonemes
def get_timit_val_sentence(idx):
# the validation set for this project comprises the last 300 sentences of the TIMIT training partition minus
# the first two sentences per speaker (SA1, SA2) resulting in 240 utterance in total.
# the persons are not sorted by dialect regions when accessed with .person_by_index, which ensures that all
# dialect regions are represented in both the training and validation set
person_idx = int(np.floor(idx / 8)) + 432
person = timit_training_set.person_by_index(person_idx)
sentence_idx = (idx % 8) + 2 # to ignore sentences 0 and 1 (SA1 and SA2), because they are also in training set
sentence = person.sentence_by_index(sentence_idx)
audio = sentence.raw_audio
words = sentence.words_df.index.values
word_onsets = sentence.words_df['start'].values
phonemes = sentence.phones_df.index.values
return audio, words, phonemes
def get_timit_test_sentence(idx):
person_idx = int(np.floor(idx / 8))
person = timit_test_set.person_by_index(person_idx)
sentence_idx = (idx % 8) + 2 # to ignore sentences 0 and 1 (SA1 and SA2), because they are also in training set
sentence = person.sentence_by_index(sentence_idx)
audio = sentence.raw_audio
words = sentence.words_df.index.values
word_onsets = sentence.words_df['start'].values
phonemes = sentence.phones_df.index.values
return audio, words, phonemes
# load timit_word2cmu_phonemes: a dictionary that translates the words of the TIMIT vocabulary to phonemes
pickle_in = open('dicts/timit_word2cmu_phonemes.pickle', 'rb')
timit_word2cmu_phonemes = pickle.load(pickle_in)
path_for_saving_text_cmu_phone_files = '../Datasets/TIMIT/cmu_phoneme_sequences_idx_open_unmix/'
# #: padding, $: silence, >: space, %: random sound, -: silence (no lyrics)
cmu_vocabulary = ['#', '$', '%', '>', '-', 'AA', 'AE', 'AH', 'AO', 'AW', 'AY', 'B', 'CH', 'D', 'DH', 'EH', 'ER', 'EY', 'F', 'G',
'HH', 'IH', 'IY', 'JH', 'K', 'L', 'M', 'N', 'NG', 'OW', 'OY', 'P', 'R', 'S', 'SH', 'T', 'TH', 'UH',
'UW', 'V', 'W', 'Y', 'Z', 'ZH']
cmu_phoneme2idx = {}
for idx, phoneme in enumerate(cmu_vocabulary):
cmu_phoneme2idx[phoneme] = idx
print(cmu_phoneme2idx)
idx2cmu_phoneme = {}
for idx, phoneme in enumerate(cmu_vocabulary):
idx2cmu_phoneme[idx] = phoneme
print(idx2cmu_phoneme)
pickle_out = open(os.path.join('dicts', "cmu_vocabulary.pickle"), "wb")
pickle.dump(cmu_vocabulary, pickle_out)
pickle_out.close()
pickle_out = open(os.path.join('dicts', "cmu_phoneme2idx.pickle"), "wb")
pickle.dump(cmu_phoneme2idx, pickle_out)
pickle_out.close()
pickle_out = open(os.path.join('dicts', "idx2cmu_phoneme.pickle"), "wb")
pickle.dump(idx2cmu_phoneme, pickle_out)
pickle_out.close()
# -----------------------------------------------------------------------------------------------------------
# save each TIMIT training sentence as sequence of CMU phonemes in index representation
for idx in range(4320):
speech, words, phonemes = get_timit_train_sentence(idx)
phoneme_sequence = []
for word in words:
phones = timit_word2cmu_phonemes[word]
for p in phones:
phoneme_sequence.append(p)
phoneme_sequence.append('>')
# remove the last space token
phoneme_sequence = phoneme_sequence[:-1]
phoneme_idx = np.array([cmu_phoneme2idx[p] for p in phoneme_sequence])
# add a silence token (idx=1) to start and end of character sequence
phoneme_idx = np.pad(phoneme_idx, (1, 1), mode='constant', constant_values=1)
phoneme_idx = torch.from_numpy(phoneme_idx)
file_name = os.path.join(path_for_saving_text_cmu_phone_files, 'train', '{}.pt'.format(idx))
torch.save(phoneme_idx, file_name)
# validation sentences
for idx in range(240):
speech, words, phonemes = get_timit_val_sentence(idx)
phoneme_sequence = []
for word in words:
phones = timit_word2cmu_phonemes[word]
for p in phones:
phoneme_sequence.append(p)
phoneme_sequence.append('>')
# remove the last space token
phoneme_sequence = phoneme_sequence[:-1]
phoneme_idx = np.array([cmu_phoneme2idx[p] for p in phoneme_sequence])
# add a silence token (idx=1) to start and end of character sequence
phoneme_idx = np.pad(phoneme_idx, (1, 1), mode='constant', constant_values=1)
phoneme_idx = torch.from_numpy(phoneme_idx)
file_name = os.path.join(path_for_saving_text_cmu_phone_files, 'val', '{}.pt'.format(idx))
torch.save(phoneme_idx, file_name)
# test sentences
for idx in range(1344):
speech, words, phonemes = get_timit_test_sentence(idx)
phoneme_sequence = []
for word in words:
phones = timit_word2cmu_phonemes[word]
for p in phones:
phoneme_sequence.append(p)
phoneme_sequence.append('>')
# remove the last space token
phoneme_sequence = phoneme_sequence[:-1]
phoneme_idx = np.array([cmu_phoneme2idx[p] for p in phoneme_sequence])
# add a silence token (idx=1) to start and end of character sequence
phoneme_idx = np.pad(phoneme_idx, (1, 1), mode='constant', constant_values=1)
phoneme_idx = torch.from_numpy(phoneme_idx)
file_name = os.path.join(path_for_saving_text_cmu_phone_files, 'test', '{}.pt'.format(idx))
torch.save(phoneme_idx, file_name)