-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchromosome.cpp
304 lines (268 loc) · 8.18 KB
/
chromosome.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
#include "chromosome.hpp"
#include <cstdlib>
#include <functional>
#include <map>
#include <memory>
#include <stdexcept> // for std::out_of_range
#include <string>
#include <iostream>
#include "utils.hpp"
#include <unordered_set>
extern void gameOfLife(int board[BOARD_SIZE][BOARD_SIZE], int boardColSize);
Chromosome::Chromosome() : score(0), fitness(0) {
memset(board, 0, sizeof(board[0][0]) * BOARD_SIZE * BOARD_SIZE);
// Define shape functions
auto square_s = [](int boardSize, int x, int y) {
return x > boardSize * 3 / 8 && x < boardSize * 5 / 8 &&
y > boardSize * 3 / 8 && y < boardSize * 5 / 8;
};
auto circle = [](int boardSize, int x, int y) {
int dx = x - boardSize / 2;
int dy = y - boardSize / 2;
int radius = boardSize / 7;
return dx * dx + dy * dy <= radius * radius;
};
auto diamond = [](int boardSize, int x, int y) {
int center = boardSize / 2;
int dx = std::abs(x - center);
int dy = std::abs(y - center);
return dx + dy <= boardSize / 8;
};
auto triangle = [](int boardSize, int x, int y) {
int h = boardSize / 11; // quarter the board size
int center = boardSize / 2; // center of the board
return y >= center - h && y <= center + h &&
abs(x - center) <= y - center + h;
};
// Create a map of shape functions
std::map<std::string, std::function<bool(int, int, int)>> shapes = {
{"square_s", square_s}, {"circle", circle}, {"diamond", diamond},
{"triangle", triangle}};
// Select a random shape function
auto shapeEntry = std::next(shapes.begin(), arc4random_uniform(shapes.size()));
// Adjust aliveProbability based on the shape
double adjustedAliveProbability = aliveProbability;
if (shapeEntry->first == "circle") {
adjustedAliveProbability *= 0.4; // Increase for circle
} else if (shapeEntry->first == "square_s") {
adjustedAliveProbability *= 1.4; // Decrease for square_s
} else if (shapeEntry->first == "triangle") {
adjustedAliveProbability *= 1.8; // Increase for triangle
}
// Create random configuration in the middle of the board
for (int i = 0; i < BOARD_SIZE; i++) {
for (int j = 0; j < BOARD_SIZE; j++) {
if (shapeEntry->second(BOARD_SIZE, i, j) &&
((arc4random_uniform(UINT32_MAX) / (double)UINT32_MAX) <
adjustedAliveProbability)) {
board[i][j] = 1;
}
}
}
}
Chromosome::Chromosome(int crossoverPointX, std::shared_ptr<Chromosome> parent1,
std::shared_ptr<Chromosome> parent2)
: score(0), fitness(0) {
memset(board, 0, sizeof(board[0][0]) * BOARD_SIZE * BOARD_SIZE);
if (crossoverPointX < 0 || crossoverPointX >= BOARD_SIZE) {
throw std::out_of_range("crossover point is out of bounds");
}
// Perform crossover
for (int i = 0; i < BOARD_SIZE; ++i) {
for (int j = 0; j < BOARD_SIZE; ++j) {
if (i < crossoverPointX) {
board[i][j] = parent1->board[i][j];
} else {
board[i][j] = parent2->board[i][j];
}
}
}
}
Chromosome::Chromosome(std::shared_ptr<Chromosome> parent1,
std::shared_ptr<Chromosome> parent2)
: score(0), fitness(0) {
// init 0 board
memset(board, 0, sizeof(board[0][0]) * BOARD_SIZE * BOARD_SIZE);
// Perform uniform crossover
for (int i = 0; i < BOARD_SIZE; ++i) {
for (int j = 0; j < BOARD_SIZE; ++j) {
if (arc4random_uniform(2) == 0) {
board[i][j] = parent1->board[i][j];
} else {
board[i][j] = parent2->board[i][j];
}
}
}
}
void Chromosome::printBoard() {
int firstRowWithAliveCell = -1;
int lastRowWithAliveCell = -1;
// Find the first and last rows with alive cells
for (int row = 0; row < BOARD_SIZE; row++) {
for (int col = 0; col < BOARD_SIZE; col++) {
if (board[row][col] == 1) {
if (firstRowWithAliveCell == -1) {
firstRowWithAliveCell = row;
}
lastRowWithAliveCell = row;
break;
}
}
}
// Print only the rows with alive cells
for (int row = firstRowWithAliveCell; row <= lastRowWithAliveCell; row++) {
for (int col = 0; col < BOARD_SIZE; col++) {
if (board[row][col] == 1) {
std::cout << square;
} else {
std::cout << " ";
}
}
std::cout << std::endl;
}
}
std::string Chromosome::printBoardToFile() {
std::string boardStr;
for (int row = 0; row < BOARD_SIZE; row++) {
for (int col = 0; col < BOARD_SIZE; col++) {
boardStr += std::to_string(board[row][col]);
}
boardStr += "\n";
}
return boardStr;
}
bool compareBoard(int board1[BOARD_SIZE][BOARD_SIZE],
int board2[BOARD_SIZE][BOARD_SIZE]) {
// compare two boards
for (int row = 0; row < BOARD_SIZE; row++) {
for (int col = 0; col < BOARD_SIZE; col++) {
if (board1[row][col] != board2[row][col]) {
return false;
}
}
}
return true;
}
double getScore(int maxAlive, int startAlive, int stablePeriod) {
// calculate the score for a given board
if (startAlive == 0) {
return 0;
}
// give more weight to the difference between the start alive and max alive
// than the number of generations since for all the boards that reach the
// max alive the number of generations will be the same
return std::max(
1, maxAlive -
static_cast<int>(startAlive * static_cast<int> (BOARD_SIZE / 7)) +
stablePeriod);
}
#pragma GCC diagnostic ignored "-Wunused-but-set-variable"
void Chromosome::calculateScore() {
// Calculate fitness for a given board
int temp_score = 0, startAlive = 0, curAlive = 0,
maxAlive = 0, numGenerations = BOARD_SIZE * BOARD_SIZE / 2;
std::vector<int> lastAliveCells;
maxAlive = startAlive = curAlive = howManyAlive(board);
if (startAlive == 0) {
this->score = 0;
return;
}
// create a copy of the board to avoid changing the original board
static int tempBoard[BOARD_SIZE][BOARD_SIZE] = {{0}};
for (int row = 0; row < BOARD_SIZE; row++) {
memcpy(tempBoard[row], board[row], BOARD_SIZE * sizeof(int));
}
// Hash table to store past states
std::unordered_set<std::string> pastStates;
while (numGenerations > 0 &&
curAlive > 2) { // while the board is changing
// Convert tempBoard to run-length encoded string
std::string tempBoardStr;
int runLength = 0;
int lastCell = tempBoard[0][0];
for (int i = 0; i < BOARD_SIZE; ++i) {
for (int j = 0; j < BOARD_SIZE; ++j) {
if (tempBoard[i][j] == lastCell) {
runLength++;
} else {
tempBoardStr += std::to_string(lastCell) + "#" + std::to_string(runLength) + " ";
lastCell = tempBoard[i][j];
runLength = 1;
}
}
}
tempBoardStr += std::to_string(lastCell) + "#" + std::to_string(runLength);
// Check if current state matches any past state
if (pastStates.find(tempBoardStr) != pastStates.end()) {
break;
}
// Add current state to past states
pastStates.insert(tempBoardStr);
gameOfLife(tempBoard, BOARD_SIZE);
numGenerations--;
temp_score++; // increase fitness for each generation
curAlive = howManyAlive(tempBoard);
if (curAlive > maxAlive) {
maxAlive = curAlive;
copyBoard(tempBoard, maxState);
}
}
this->score = getScore(maxAlive, startAlive, temp_score);
}
void Chromosome::calculateFitness(double totalFitnessScore) {
if (totalFitnessScore == 0) {
this->fitness = 0;
} else {
this->fitness = this->score / totalFitnessScore;
}
}
/* shadowing board on purpose */
void Chromosome::printBoard(std::ostream &os,
int board[BOARD_SIZE][BOARD_SIZE]) {
int row = 0, col = 0;
// find first row with alive cell
for (row = 0; row < BOARD_SIZE; row++) {
for (col = 0; col < BOARD_SIZE; col++) {
if (board[row][col] == 1) {
break;
}
}
if (col != BOARD_SIZE) {
break;
}
}
// find last row with alive cell
int lastRowWithAliveCell = -1;
for (int i = BOARD_SIZE - 1; i >= 0; i--) {
for (int j = 0; j < BOARD_SIZE; j++) {
if (board[i][j] == 1) {
lastRowWithAliveCell = i;
break;
}
}
if (lastRowWithAliveCell != -1) {
break;
}
}
// add padding to the top and bottom of the board
lastRowWithAliveCell = std::min(lastRowWithAliveCell + 2, BOARD_SIZE - 1);
int startRow = std::max(row - 2, 0);
// print only the rows in the range of the first and last rows with alive
// cells
for (row = startRow; row <= lastRowWithAliveCell; row++) {
for (col = 0; col < BOARD_SIZE; col++) {
// add border
if (row == startRow || row == lastRowWithAliveCell || col == 0 ||
col == BOARD_SIZE - 1) {
os << "#";
continue;
}
if (board[row][col] == 1) {
os << square;
} else {
os << " ";
}
}
os << std::endl;
}
}