-
Notifications
You must be signed in to change notification settings - Fork 106
/
neuzz.c
2048 lines (1542 loc) · 59.7 KB
/
neuzz.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#define _GNU_SOURCE
#include <sys/time.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/resource.h>
#include <sys/wait.h>
#include <sched.h>
#include <sys/stat.h>
#include <string.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <string.h>
#include <stdint.h>
#include <sys/mman.h>
#include <dirent.h>
#include <ctype.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <time.h>
/* Most of code is borrowed directly from AFL fuzzer (https://github.com/mirrorer/afl), credits to Michal Zalewski */
/* Fork server init timeout multiplier: we'll wait the user-selected timeout plus this much for the fork server to spin up. */
#define FORK_WAIT_MULT 10
/* Environment variable used to pass SHM ID to the called program. */
#define SHM_ENV_VAR "__AFL_SHM_ID"
/* Local port to communicate with python module. */
#define PORT 12012
/* Maximum line length passed from GCC to 'as' and used for parsing configuration files. */
#define MAX_LINE 8192
/* Designated file descriptors for forkserver commands (the application will use FORKSRV_FD and FORKSRV_FD + 1). */
#define FORKSRV_FD 198
/* Distinctive bitmap signature used to indicate failed execution. */
#define EXEC_FAIL_SIG 0xfee1dead
/* Smoothing divisor for CPU load and exec speed stats (1 - no smoothing). */
#define AVG_SMOOTHING 16
/* Caps on block sizes for inserion and deletion operations. The set of numbers are adaptive to file length and the defalut max file length is 10000. */
/* default setting, will be changed later accroding to file len */
int havoc_blk_small = 2048;
int havoc_blk_medium = 4096;
int havoc_blk_large = 8192;
#define HAVOC_BLK_SMALL 2048
#define HAVOC_BLK_MEDIUM 4096
#define HAVOC_BLK_LARGE 7402
#define MEM_BARRIER() \
asm volatile("" ::: "memory")
/* Map size for the traced binary. */
#define MAP_SIZE 2<<18
#define R(x) (random() % (x))
#define likely(_x) __builtin_expect(!!(_x), 1)
#define unlikely(_x) __builtin_expect(!!(_x), 0)
#define MIN(_a,_b) ((_a) > (_b) ? (_b) : (_a))
#define MAX(_a,_b) ((_a) > (_b) ? (_a) : (_b))
/* Error-checking versions of read() and write() that call RPFATAL() as appropriate. */
#define ck_write(fd, buf, len, fn) do { \
u32 _len = (len); \
int _res = write(fd, buf, _len); \
if (_res != _len) fprintf(stderr, "Short write to %d %s\n",_res, fn); \
} while (0)
#define ck_read(fd, buf, len, fn) do { \
u32 _len = (len); \
int _res = read(fd, buf, _len); \
if (_res != _len) fprintf(stderr, "Short read from %d %s\n",_res, fn); \
} while (0)
/* User-facing macro to sprintf() to a dynamically allocated buffer. */
#define alloc_printf(_str...) ({ \
char* _tmp; \
int _len = snprintf(NULL, 0, _str); \
if (_len < 0) perror("Whoa, snprintf() fails?!"); \
_tmp = malloc(_len + 1); \
snprintf((char*)_tmp, _len + 1, _str); \
_tmp; \
})
typedef uint8_t u8;
typedef uint16_t u16;
typedef uint32_t u32;
#ifdef __x86_64__
typedef unsigned long long u64;
#else
typedef uint64_t u64;
#endif /* ^__x86_64__ */
unsigned long total_execs; /* Total number of execs */
static int shm_id; /* ID of the SHM region */
static int mem_limit = 1024; /* Maximum memory limit for target program */
static int cpu_aff = -1; /* Selected CPU core */
int round_cnt = 0; /* Round number counter */
int edge_gain=0; /* If there is new edge gain */
int exec_tmout = 1000; /* Exec timeout (ms) */
int stage_num = 1;
int old=0;
int now=0;
int fast=1;
char * target_path; /* Path to target binary */
char * trace_bits; /* SHM with instrumentation bitmap */
static volatile int stop_soon; /* Ctrl-C pressed? */
static int cpu_core_count; /* CPU core count */
static u64 total_cal_us=0; /* Total calibration time (us) */
static volatile int child_timed_out; /* Traced process timed out? */
int kill_signal; /* Signal that killed the child */
static int out_fd, /* Persistent fd for out_file */
dev_urandom_fd = -1, /* Persistent fd for /dev/urandom */
dev_null_fd = -1, /* Persistent fd for /dev/null */
fsrv_ctl_fd, /* Fork server control pipe (write) */
fsrv_st_fd; /* Fork server status pipe (read) */
static int forksrv_pid, /* PID of the fork server */
child_pid = -1, /* PID of the fuzzed program */
out_dir_fd = -1; /* FD of the lock file */
char *in_dir, /* Input directory with test cases */
*out_file, /* File to fuzz, if any */
*out_dir; /* Working & output directory */
char virgin_bits[MAP_SIZE]; /* Regions yet untouched by fuzzing */
static int mut_cnt = 0; /* Total mutation counter */
char *out_buf, *out_buf1, *out_buf2, *out_buf3;
size_t len; /* Maximum file length for every mutation */
int loc[10000]; /* Array to store critical bytes locations*/
int sign[10000]; /* Array to store sign of critical bytes */
/* more fined grined mutation can have better results but slower*/
//int num_index[23] = {0,2,4,8,16,32,64,128,256,512,1024,1536,2048,2560,3072, 3584,4096,4608,5120, 5632,6144,6656,7103};
/* default setting, will be change according to different file length */
int num_index[14] = {0,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192};
enum {
/* 00 */ FAULT_NONE,
/* 01 */ FAULT_TMOUT,
/* 02 */ FAULT_CRASH,
/* 03 */ FAULT_ERROR,
/* 04 */ FAULT_NOINST,
/* 05 */ FAULT_NOBITS
};
/* Spin up fork server (instrumented mode only). The idea is explained here:
http://lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html
In essence, the instrumentation allows us to skip execve(), and just keep
cloning a stopped child. So, we just execute once, and then send commands
through a pipe. The other part of this logic is in afl-as.h. */
void setup_stdio_file(void) {
char* fn = alloc_printf("%s/.cur_input", out_dir);
unlink(fn); /* Ignore errors */
out_fd = open(fn, O_RDWR | O_CREAT | O_EXCL, 0600);
if (out_fd < 0) perror("Unable to create .cur_input");
free(fn);
}
/* Count the number of non-255 bytes set in the bitmap. Used strictly for the
status screen, several calls per second or so. */
#define FF(_b) (0xff << ((_b) << 3))
static u32 count_non_255_bytes(u8* mem) {
u32* ptr = (u32*)mem;
u32 i = (MAP_SIZE >> 2);
u32 ret = 0;
while (i--) {
u32 v = *(ptr++);
/* This is called on the virgin bitmap, so optimize for the most likely
case. */
if (v == 0xffffffff) continue;
if ((v & FF(0)) != FF(0)) ret++;
if ((v & FF(1)) != FF(1)) ret++;
if ((v & FF(2)) != FF(2)) ret++;
if ((v & FF(3)) != FF(3)) ret++;
}
return ret;
}
/* Handle stop signal (Ctrl-C, etc). */
static void handle_stop_sig(int sig) {
stop_soon = 1;
if (child_pid > 0) kill(child_pid, SIGKILL);
if (forksrv_pid > 0) kill(forksrv_pid, SIGKILL);
printf("total execs %ld edge coverage %d.\n", total_execs,(int)(count_non_255_bytes(virgin_bits)));
//free buffer
free(out_buf);
free(out_buf1);
free(out_buf2);
free(out_buf3);
exit(0);
}
/* Check if the current execution path brings anything new to the table.
Update virgin bits to reflect the finds. Returns 1 if the only change is
the hit-count for a particular tuple; 2 if there are new tuples seen.
Updates the map, so subsequent calls will always return 0.
This function is called after every exec() on a fairly large buffer, so
it needs to be fast. We do this in 32-bit and 64-bit flavors. */
static inline char has_new_bits(char* virgin_map) {
#ifdef __x86_64__
u64* current = (u64*)trace_bits;
u64* virgin = (u64*)virgin_map;
u32 i = (MAP_SIZE >> 3);
#else
u32* current = (u32*)trace_bits;
u32* virgin = (u32*)virgin_map;
u32 i = (MAP_SIZE >> 2);
#endif /* ^__x86_64__ */
u8 ret = 0;
while (i--) {
/* Optimize for (*current & *virgin) == 0 - i.e., no bits in current bitmap
that have not been already cleared from the virgin map - since this will
almost always be the case. */
if (unlikely(*current) && unlikely(*current & *virgin)) {
if (likely(ret < 2)) {
u8* cur = (u8*)current;
u8* vir = (u8*)virgin;
/* Looks like we have not found any new bytes yet; see if any non-zero
bytes in current[] are pristine in virgin[]. */
#ifdef __x86_64__
if ((cur[0] && vir[0] == 0xff) || (cur[1] && vir[1] == 0xff) ||
(cur[2] && vir[2] == 0xff) || (cur[3] && vir[3] == 0xff) ||
(cur[4] && vir[4] == 0xff) || (cur[5] && vir[5] == 0xff) ||
(cur[6] && vir[6] == 0xff) || (cur[7] && vir[7] == 0xff)) ret = 2;
else ret = 1;
#else
if ((cur[0] && vir[0] == 0xff) || (cur[1] && vir[1] == 0xff) ||
(cur[2] && vir[2] == 0xff) || (cur[3] && vir[3] == 0xff)) ret = 2;
else ret = 1;
#endif /* ^__x86_64__ */
}
*virgin &= ~*current;
}
current++;
virgin++;
}
return ret;
}
/* Handle timeout (SIGALRM). */
static void handle_timeout(int sig) {
if (child_pid > 0) {
child_timed_out = 1;
kill(child_pid, SIGKILL);
} else if (child_pid == -1 && forksrv_pid > 0) {
child_timed_out = 1;
kill(forksrv_pid, SIGKILL);
}
}
/* Set up signal handlers. More complicated that needs to be, because libc on
Solaris doesn't resume interrupted reads(), sets SA_RESETHAND when you call
siginterrupt(), and does other stupid things. */
void setup_signal_handlers(void) {
struct sigaction sa;
sa.sa_handler = NULL;
sa.sa_flags = SA_RESTART;
sa.sa_sigaction = NULL;
sigemptyset(&sa.sa_mask);
/* Various ways of saying "stop". */
sa.sa_handler = handle_stop_sig;
sigaction(SIGHUP, &sa, NULL);
sigaction(SIGINT, &sa, NULL);
sigaction(SIGTERM, &sa, NULL);
/* Exec timeout notifications. */
sa.sa_handler = handle_timeout;
sigaction(SIGALRM, &sa, NULL);
/* Things we don't care about. */
sa.sa_handler = SIG_IGN;
sigaction(SIGTSTP, &sa, NULL);
sigaction(SIGPIPE, &sa, NULL);
}
void init_forkserver(char** argv) {
static struct itimerval it;
int st_pipe[2], ctl_pipe[2];
int status;
int rlen;
char* cwd = getcwd(NULL, 0);
out_file = alloc_printf("%s/%s/.cur_input",cwd, out_dir);
printf("Spinning up the fork server...\n");
if (pipe(st_pipe) || pipe(ctl_pipe)) perror("pipe() failed");
forksrv_pid = fork();
if (forksrv_pid < 0) perror("fork() failed");
if (!forksrv_pid) {
struct rlimit r;
/* Umpf. On OpenBSD, the default fd limit for root users is set to
soft 128. Let's try to fix that... */
if (!getrlimit(RLIMIT_NOFILE, &r) && r.rlim_cur < FORKSRV_FD + 2) {
r.rlim_cur = FORKSRV_FD + 2;
setrlimit(RLIMIT_NOFILE, &r); /* Ignore errors */
}
if (mem_limit) {
r.rlim_max = r.rlim_cur = ((rlim_t)mem_limit) << 20;
#ifdef RLIMIT_AS
setrlimit(RLIMIT_AS, &r); /* Ignore errors */
#else
/* This takes care of OpenBSD, which doesn't have RLIMIT_AS, but
according to reliable sources, RLIMIT_DATA covers anonymous
maps - so we should be getting good protection against OOM bugs. */
setrlimit(RLIMIT_DATA, &r); /* Ignore errors */
#endif /* ^RLIMIT_AS */
}
/* Dumping cores is slow and can lead to anomalies if SIGKILL is delivered
before the dump is complete. */
r.rlim_max = r.rlim_cur = 0;
setrlimit(RLIMIT_CORE, &r); /* Ignore errors */
/* Isolate the process and configure standard descriptors. If out_file is
specified, stdin is /dev/null; otherwise, out_fd is cloned instead. */
setsid();
dup2(dev_null_fd, 1);
dup2(dev_null_fd, 2);
if (out_file) {
dup2(dev_null_fd, 0);
} else {
dup2(out_fd, 0);
close(out_fd);
}
/* Set up control and status pipes, close the unneeded original fds. */
if (dup2(ctl_pipe[0], FORKSRV_FD) < 0) perror("dup2() failed");
if (dup2(st_pipe[1], FORKSRV_FD + 1) < 0) perror("dup2() failed");
close(ctl_pipe[0]);
close(ctl_pipe[1]);
close(st_pipe[0]);
close(st_pipe[1]);
close(out_dir_fd);
close(dev_null_fd);
close(dev_urandom_fd);
/* This should improve performance a bit, since it stops the linker from
doing extra work post-fork(). */
if (!getenv("LD_BIND_LAZY")) setenv("LD_BIND_NOW", "1", 0);
execv(target_path, argv);
/* Use a distinctive bitmap signature to tell the parent about execv()
falling through. */
*(int *)trace_bits = EXEC_FAIL_SIG;
exit(0);
}
/* Close the unneeded endpoints. */
close(ctl_pipe[0]);
close(st_pipe[1]);
fsrv_ctl_fd = ctl_pipe[1];
fsrv_st_fd = st_pipe[0];
/* Wait for the fork server to come up, but don't wait too long. */
it.it_value.tv_sec = ((exec_tmout * FORK_WAIT_MULT) / 1000);
it.it_value.tv_usec = ((exec_tmout * FORK_WAIT_MULT) % 1000) * 1000;
setitimer(ITIMER_REAL, &it, NULL);
rlen = read(fsrv_st_fd, &status, 4);
it.it_value.tv_sec = 0;
it.it_value.tv_usec = 0;
setitimer(ITIMER_REAL, &it, NULL);
/* If we have a four-byte "hello" message from the server, we're all set.
Otherwise, try to figure out what went wrong. */
if (rlen == 4) {
printf("All right - fork server is up.");
return;
}
if (child_timed_out)
perror("Timeout while initializing fork server (adjusting -t may help)");
if (waitpid(forksrv_pid, &status, 0) <= 0)
perror("waitpid() failed");
if (WIFSIGNALED(status)) {
fprintf(stderr, "Fork server crashed with signal %d", WTERMSIG(status));
}
if (*(int*)trace_bits == EXEC_FAIL_SIG)
fprintf(stderr, "Unable to execute target application ('%s')", argv[0]);
perror("Fork server handshake failed");
}
/* Get rid of shared memory (atexit handler). */
static void remove_shm(void) {
shmctl(shm_id, IPC_RMID, NULL);
}
/* Configure shared memory and virgin_bits. This is called at startup. */
void setup_shm(void) {
char* shm_str;
memset(virgin_bits, 255, MAP_SIZE);
shm_id = shmget(IPC_PRIVATE, MAP_SIZE, IPC_CREAT | IPC_EXCL | 0600);
if (shm_id < 0) perror("shmget() failed");
atexit(remove_shm);
shm_str = alloc_printf("%d", shm_id);
/* If somebody is asking us to fuzz instrumented binaries in dumb mode,
we don't want them to detect instrumentation, since we won't be sending
fork server commands. This should be replaced with better auto-detection
later on, perhaps? */
setenv(SHM_ENV_VAR, shm_str, 1);
free(shm_str);
trace_bits = shmat(shm_id, NULL, 0);
if (!trace_bits) perror("shmat() failed");
}
void setup_dirs_fds(void) {
char* tmp;
int fd;
printf("Setting up output directories...");
if (mkdir(out_dir, 0700)) {
if (errno != EEXIST) fprintf(stderr,"Unable to create %s\n", out_dir);
}
/* Generally useful file descriptors. */
dev_null_fd = open("/dev/null", O_RDWR);
if (dev_null_fd < 0) perror("Unable to open /dev/null");
dev_urandom_fd = open("/dev/urandom", O_RDONLY);
if (dev_urandom_fd < 0) perror("Unable to open /dev/urandom");
}
/* Detect @@ in args. */
void detect_file_args(char** argv) {
int i = 0;
char* cwd = getcwd(NULL, 0);
if (!cwd) perror("getcwd() failed");
while (argv[i]) {
char* aa_loc = strstr(argv[i], "@@");
if (aa_loc) {
char *aa_subst, *n_arg;
/* If we don't have a file name chosen yet, use a safe default. */
if (!out_file)
out_file = alloc_printf("%s/.cur_input", out_dir);
/* Be sure that we're always using fully-qualified paths. */
if (out_file[0] == '/') aa_subst = out_file;
else aa_subst = alloc_printf("%s/%s", cwd, out_file);
/* Construct a replacement argv value. */
*aa_loc = 0;
n_arg = alloc_printf("%s%s%s", argv[i], aa_subst, aa_loc + 2);
argv[i] = n_arg;
*aa_loc = '@';
if (out_file[0] != '/') free(aa_subst);
}
i++;
}
free(cwd); /* not tracked */
}
/* set up target path */
void setup_targetpath(char * argvs){
char* cwd = getcwd(NULL, 0);
target_path = alloc_printf("%s/%s", cwd, argvs);
argvs = target_path;
}
/* Destructively classify execution counts in a trace. This is used as a
preprocessing step for any newly acquired traces. Called on every exec,
must be fast. */
static const u8 count_class_lookup8[256] = {
[0] = 0,
[1] = 1,
[2] = 2,
[3] = 4,
[4 ... 7] = 8,
[8 ... 15] = 16,
[16 ... 31] = 32,
[32 ... 127] = 64,
[128 ... 255] = 128
};
static u16 count_class_lookup16[65536];
void init_count_class16(void) {
u32 b1, b2;
for (b1 = 0; b1 < 256; b1++)
for (b2 = 0; b2 < 256; b2++)
count_class_lookup16[(b1 << 8) + b2] =
(count_class_lookup8[b1] << 8) |
count_class_lookup8[b2];
}
#ifdef __x86_64__
static inline void classify_counts(u64* mem) {
u32 i = MAP_SIZE >> 3;
while (i--) {
/* Optimize for sparse bitmaps. */
if (unlikely(*mem)) {
u16* mem16 = (u16*)mem;
mem16[0] = count_class_lookup16[mem16[0]];
mem16[1] = count_class_lookup16[mem16[1]];
mem16[2] = count_class_lookup16[mem16[2]];
mem16[3] = count_class_lookup16[mem16[3]];
}
mem++;
}
}
#else
static inline void classify_counts(u32* mem) {
u32 i = MAP_SIZE >> 2;
while (i--) {
/* Optimize for sparse bitmaps. */
if (unlikely(*mem)) {
u16* mem16 = (u16*)mem;
mem16[0] = count_class_lookup16[mem16[0]];
mem16[1] = count_class_lookup16[mem16[1]];
}
mem++;
}
}
#endif /* ^__x86_64__ */
/* Get the number of runnable processes, with some simple smoothing. */
static double get_runnable_processes(void) {
static double res;
#if defined(__APPLE__) || defined(__FreeBSD__) || defined (__OpenBSD__)
/* I don't see any portable sysctl or so that would quickly give us the
number of runnable processes; the 1-minute load average can be a
semi-decent approximation, though. */
if (getloadavg(&res, 1) != 1) return 0;
#else
/* On Linux, /proc/stat is probably the best way; load averages are
computed in funny ways and sometimes don't reflect extremely short-lived
processes well. */
FILE* f = fopen("/proc/stat", "r");
u8 tmp[1024];
u32 val = 0;
if (!f) return 0;
while (fgets(tmp, sizeof(tmp), f)) {
if (!strncmp(tmp, "procs_running ", 14) ||
!strncmp(tmp, "procs_blocked ", 14)) val += atoi(tmp + 14);
}
fclose(f);
if (!res) {
res = val;
} else {
res = res * (1.0 - 1.0 / AVG_SMOOTHING) +
((double)val) * (1.0 / AVG_SMOOTHING);
}
#endif /* ^(__APPLE__ || __FreeBSD__ || __OpenBSD__) */
return res;
}
/* Count the number of logical CPU cores. */
static void get_core_count(void) {
u32 cur_runnable = 0;
#if defined(__APPLE__) || defined(__FreeBSD__) || defined (__OpenBSD__)
size_t s = sizeof(cpu_core_count);
/* On *BSD systems, we can just use a sysctl to get the number of CPUs. */
#ifdef __APPLE__
if (sysctlbyname("hw.logicalcpu", &cpu_core_count, &s, NULL, 0) < 0)
return;
#else
int s_name[2] = { CTL_HW, HW_NCPU };
if (sysctl(s_name, 2, &cpu_core_count, &s, NULL, 0) < 0) return;
#endif /* ^__APPLE__ */
#else
#ifdef HAVE_AFFINITY
cpu_core_count = sysconf(_SC_NPROCESSORS_ONLN);
#else
FILE* f = fopen("/proc/stat", "r");
u8 tmp[1024];
if (!f) return;
while (fgets(tmp, sizeof(tmp), f))
if (!strncmp(tmp, "cpu", 3) && isdigit(tmp[3])) cpu_core_count++;
fclose(f);
#endif /* ^HAVE_AFFINITY */
#endif /* ^(__APPLE__ || __FreeBSD__ || __OpenBSD__) */
if (cpu_core_count > 0) {
cur_runnable = (u32)get_runnable_processes();
#if defined(__APPLE__) || defined(__FreeBSD__) || defined (__OpenBSD__)
/* Add ourselves, since the 1-minute average doesn't include that yet. */
cur_runnable++;
#endif /* __APPLE__ || __FreeBSD__ || __OpenBSD__ */
printf("You have %u CPU core%s and %u runnable tasks (utilization: %0.0f%%).\n",
cpu_core_count, cpu_core_count > 1 ? "s" : "",
cur_runnable, cur_runnable * 100.0 / cpu_core_count);
if (cpu_core_count > 1) {
if (cur_runnable > cpu_core_count * 1.5) {
printf("System under apparent load, performance may be spotty.\n");
}
}
} else {
cpu_core_count = 0;
printf("Unable to figure out the number of CPU cores.\n");
}
}
/* Build a list of processes bound to specific cores. Returns -1 if nothing
can be found. Assumes an upper bound of 4k CPUs. */
static void bind_to_free_cpu(void) {
DIR* d;
struct dirent* de;
cpu_set_t c;
u8 cpu_used[4096] = { 0 };
u32 i;
if (cpu_core_count < 2) return;
if (getenv("AFL_NO_AFFINITY")) {
perror("Not binding to a CPU core (AFL_NO_AFFINITY set).");
return;
}
d = opendir("/proc");
if (!d) {
perror("Unable to access /proc - can't scan for free CPU cores.");
return;
}
printf("Checking CPU core loadout...\n");
/* Introduce some jitter, in case multiple AFL tasks are doing the same
thing at the same time... */
usleep(R(1000) * 250);
/* Scan all /proc/<pid>/status entries, checking for Cpus_allowed_list.
Flag all processes bound to a specific CPU using cpu_used[]. This will
fail for some exotic binding setups, but is likely good enough in almost
all real-world use cases. */
while ((de = readdir(d))) {
u8* fn;
FILE* f;
u8 tmp[MAX_LINE];
u8 has_vmsize = 0;
if (!isdigit(de->d_name[0])) continue;
fn = alloc_printf("/proc/%s/status", de->d_name);
if (!(f = fopen(fn, "r"))) {
free(fn);
continue;
}
while (fgets(tmp, MAX_LINE, f)) {
u32 hval;
/* Processes without VmSize are probably kernel tasks. */
if (!strncmp(tmp, "VmSize:\t", 8)) has_vmsize = 1;
if (!strncmp(tmp, "Cpus_allowed_list:\t", 19) &&
!strchr(tmp, '-') && !strchr(tmp, ',') &&
sscanf(tmp + 19, "%u", &hval) == 1 && hval < sizeof(cpu_used) &&
has_vmsize) {
cpu_used[hval] = 1;
break;
}
}
free(fn);
fclose(f);
}
closedir(d);
for (i = 0; i < cpu_core_count; i++) if (!cpu_used[i]) break;
if (i == cpu_core_count) {
printf("No more free CPU cores\n");
}
printf("Found a free CPU core, binding to #%u.\n", i);
cpu_aff = i;
CPU_ZERO(&c);
CPU_SET(i, &c);
if (sched_setaffinity(0, sizeof(c), &c))
perror("sched_setaffinity failed\n");
}
/* Get unix time in microseconds */
static u64 get_cur_time_us(void) {
struct timeval tv;
struct timezone tz;
gettimeofday(&tv, &tz);
return (tv.tv_sec * 1000000ULL) + tv.tv_usec;
}
/* Execute target application, monitoring for timeouts. Return status
information. The called program will update trace_bits[]. */
static u8 run_target(int timeout) {
static struct itimerval it;
static u32 prev_timed_out = 0;
int status = 0;
child_timed_out = 0;
/* After this memset, trace_bits[] are effectively volatile, so we
must prevent any earlier operations from venturing into that
territory. */
memset(trace_bits, 0, MAP_SIZE);
MEM_BARRIER();
int res;
/* In non-dumb mode, we have the fork server up and running, so simply
tell it to have at it, and then read back PID. */
if ((res = write(fsrv_ctl_fd, &prev_timed_out, 4)) != 4) {
if (stop_soon) return 0;
fprintf(stderr,"err%d: Unable to request new process from fork server (OOM?)", res);
}
if ((res = read(fsrv_st_fd, &child_pid, 4)) != 4) {
if (stop_soon) return 0;
fprintf(stderr, "err%d: Unable to request new process from fork server (OOM?)",res);
}
if (child_pid <= 0) perror("Fork server is misbehaving (OOM?)");
/* Configure timeout, as requested by user, then wait for child to terminate. */
it.it_value.tv_sec = (timeout / 1000);
it.it_value.tv_usec = (timeout % 1000) * 1000;
setitimer(ITIMER_REAL, &it, NULL);
/* The SIGALRM handler simply kills the child_pid and sets child_timed_out. */