-
Notifications
You must be signed in to change notification settings - Fork 0
/
PosePipelineMaker.py
427 lines (251 loc) · 12.5 KB
/
PosePipelineMaker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
"""
PosePipelineMaker.py
Generates and executes a pipeline to estimate poses
"""
import cv2
import numpy as np
import time
import rospy
import numpy as np
from shutil import copyfile
from libs import *
import sys
import threading
import copy
#pipeline classes
from Classes.ImgReaders import RosStreamReader,ImgStreamReader,StreamReader,RosGatherStreamReader
from Classes.ObservationGenners import CamerasObservationMaker,CangalhoObservationsMaker, CangalhoSynthObsMaker, CameraSynthObsMaker, CameraSynthObsMaker2, CangalhoSynthObsMaker2
from Classes.ArucoDetecc import CangalhoPnPDetector,CangalhoProcrustesDetector,SingleArucosDetector
from Classes.PosesCalculators import PosesCalculator, OutlierRemPoseCalculator , PosesCalculatorSynth
from Classes import PosePipeline
from Classes.Commands import CommandsImporterPose
import CommandLine
def worker(posepipe):
#executes pipeline untill it is stopped
while True:
#while there are new images
#print("AVAILABILITY")
#print(posepipe.imgStream.nextIsAvailable)
if posepipe.imgStream.nextIsAvailable:
#set input as consumed
posepipe.imgStream.nextIsAvailable=False
#gets next image
streamData= posepipe.imgStream.next()
#shows said image
#if streamData is not None:
# posepipe.imgShower(streamData)
#stop if there are no more images
#if streamData is None:
# posepipe.Stop()
# break
#generates observations
img,ids,obsR,obsT = posepipe.ObservationMaker.GetObservations(streamData)
#print("SHOW IMG")
#cv2.imshow('image',img)
#cv2.waitKey(1)
#print("RR")
#print(obsR)
#print("TT")
#print(obsT)
#adds observations to matrices
posepipe.posescalculator.AddObservations(obsR,obsT)
elif posepipe.imgStream.finished:
print("STOPPING")
posepipe.Stop()
break
if posepipe.GetStop():
print("EXITING")
break
def main(path,view=True):
#Reads the configuration file
data = FileIO.getJsonFromFile(path)
posepipeline = PosePipeline.PosePipeline()
#holds stuff
state={}
#hash of aruco detector classes
arucodetectors={
'singular':SingleArucosDetector.SingleArucosDetector,
'allforone':CangalhoPnPDetector.CangalhoPnPDetector,
'depthforone':CangalhoProcrustesDetector.CangalhoProcrustesDetector }
#In case we want to get the cameras we need the arucomodel
if "CAMERA" in data['model']['type']:
state['arucomodel'] = FileIO.getFromPickle(data['model']['arucomodel'])
if "record" not in data["model"]:
data["model"]['record']=False
#Assigns the InputStream
if data['input']['type']=='IMG':
#must set path where images are
posepipeline.imgStream = ImgStreamReader.ImgStreamReader(data['input']['path'])
elif data['input']['type']=='ROS':
camNames = []
#sets cameras if there are any
if "cameras" in data['model']:
camNames = data['model']['cameras']
posepipeline.imgStream = RosStreamReader.RosStreamReader(camNames=camNames,inputData = data['input'])
#setting stuff on state
state['intrinsics'] = FileIO.getIntrinsics(posepipeline.imgStream.camNames)
state['arucodata'] = FileIO.getJsonFromFile(data['model']['arucodata'])
elif data['input']['type']=='ROS_GATHER':
camNames = []
#sets cameras if there are any
if "cameras" in data['model']:
camNames = data['model']['cameras']
posepipeline.imgStream = RosGatherStreamReader.RosGatherStreamReader(camNames=camNames,inputData = data['input'])
#setting stuff on state
state['intrinsics'] = FileIO.getIntrinsics(posepipeline.imgStream.camNames)
state['arucodata'] = FileIO.getJsonFromFile(data['model']['arucodata'])
state['arucomodel'] = FileIO.getFromPickle(data['model']['arucomodel'])
elif data['input']['type']=='SYNTH':
posepipeline.imgStream = StreamReader.StreamReader()
state['synthmodel']=FileIO.getFromPickle(data['model']['arucomodel'])
if data['model']['type']=="SYNTH_CAMERA" or data['model']['type']=="SYNTH_CAMERA2":
state['modelscene']=FileIO.getFromPickle(data['model']['modelscene'])
#print(state['synthmodel'][0])
#print(state['synthmodel'][1])
#visu.ViewRefs(state['synthmodel'][0],state['synthmodel'][1],refSize=1,showRef=True,saveImg=True,saveName=posepipeline.folder+"/screenshot.jpg")
if "CAMERA" in data['model']['type']:
posepipeline.posescalculator=PosesCalculatorSynth.PosesCalculatorSynth({"N_objects":len(state['modelscene']['R'])})
else:
posepipeline.posescalculator=PosesCalculatorSynth.PosesCalculatorSynth({"N_objects":len(state['synthmodel']['R'])})
else:
print("This Pipeline input is invalid")
#Assigns observation maker and posecalculator
if data['model']['type']=='CANGALHO':
#static parameters
singlecamData={
"K":state['intrinsics'][posepipeline.imgStream.camNames[0]]['rgb']['K'],
"D":state['intrinsics'][posepipeline.imgStream.camNames[0]]['rgb']['D'],
"arucodata":state['arucodata']}
#sets observation maker
posepipeline.ObservationMaker = CangalhoObservationsMaker.CangalhoObservationMaker(singlecamData)
#sets pose calculator
posedata={
"N_objects":len(state['arucodata']['ids']),
}
if 'record' in data["model"]:
posedata["record"]=data["model"]["record"]
else:
posedata["record"]=False
posepipeline.posescalculator = PosesCalculator.PosesCalculator(posedata)
elif data['model']['type']=='CAMERA':
state['arucomodel'] = FileIO.getFromPickle(data['model']['arucomodel'])
#static parameters
multicamData={
"intrinsics":state['intrinsics'],
"arucodata":state['arucodata'],
"camnames":posepipeline.imgStream.camNames,
"arucomodel":state['arucomodel'],
"innerpipeline":{
"arucodetector":arucodetectors[data['model']['arucodetection']]({'arucodata':state['arucodata'],'arucomodel':state['arucomodel']})
}
}
#sets observation maker
posepipeline.ObservationMaker = CamerasObservationMaker.CamerasObservationMaker(multicamData)
#sets pose calculator
posedata={
"N_objects":len(posepipeline.imgStream.camNames),
"record":data["model"]["record"]}
#sets observation treatment
if data['model']['mode']['type']=='REGULAR':
posepipeline.posescalculator = PosesCalculator.PosesCalculator(posedata)
elif data['model']['mode']['type']=='OUTLIERREMOVE':
print("YOOO")
#static parameters
posedata['observations']=data['model']['mode']['observations']
posedata['Rcutoff']=data['model']['mode']['Rcutoff']
posedata['Tcutoff']=data['model']['mode']['Tcutoff']
print(posedata)
posepipeline.posescalculator = OutlierRemPoseCalculator.OulierRemovalPoseCalculator(posedata)
else:
print("This pose calculator is invalid")
elif data['model']['type']=='SYNTH_CANGALHO':
#in order to not copy by reference https://stackoverflow.com/questions/3975376/understanding-dict-copy-shallow-or-deep
obsdata=copy.deepcopy(data['model'])
obsdata['synthmodel']=state['synthmodel']
posepipeline.ObservationMaker= CangalhoSynthObsMaker.CangalhoSynthObsMaker(obsdata)
elif data['model']['type']=='SYNTH_CAMERA':
#in order to not copy by reference https://stackoverflow.com/questions/3975376/understanding-dict-copy-shallow-or-deep
obsdata=copy.deepcopy(data['model'])
obsdata['synthmodel']=state['synthmodel']
obsdata['modelscene']=state['modelscene']
if(view==True):
visu.ViewRefs(obsdata['modelscene'][0],obsdata['modelscene'][1])
posepipeline.ObservationMaker= CameraSynthObsMaker.CameraSynthObsMaker(obsdata)
elif data['model']['type']=='SYNTH_CAMERA2':
#in order to not copy by reference https://stackoverflow.com/questions/3975376/understanding-dict-copy-shallow-or-deep
obsdata=copy.deepcopy(data['model'])
obsdata['synthmodel']=state['synthmodel']
obsdata['modelscene']=state['modelscene']
if view:
print("DAATAAAA")
print(data['model'])
#visu.ViewRefs(obsdata['modelscene']['R'],obsdata['modelscene']['t'])
posepipeline.ObservationMaker= CameraSynthObsMaker2.CameraSynthObsMaker2(obsdata)
elif data['model']['type']=='SYNTH_CANGALHO2':
state['arucodata'] = FileIO.getJsonFromFile(data['model']['arucodata'])
state['arucodata']['idmap'] = aruco.markerIdMapper(state['arucodata']['ids'])
#in order to not copy by reference https://stackoverflow.com/questions/3975376/understanding-dict-copy-shallow-or-deep
obsdata=copy.deepcopy(data['model'])
obsdata['synthmodel']=state['synthmodel']
obsdata['arucodata']=state['arucodata']
if view:
print("DAATAAAA")
print(data['model'])
#visu.ViewRefs(obsdata['modelscene']['R'],obsdata['modelscene']['t'])
posepipeline.ObservationMaker= CangalhoSynthObsMaker2.CangalhoSynthObsMaker2(obsdata)
else:
print("This Pipeline Model is invalid")
#sets thread for terminal window
CommandLine.Start(posepipeline,CommandsImporterPose.CommandsImporterPose)
#sets thread for pipeline
t1 = threading.Thread(target=worker,args=( posepipeline,))
t1.start()
#spins ros if necessary
if data['input']['type']=='ROS' or data['input']['type']=='ROS_GATHER':
try:
rospy.spin()
except KeyboardInterrupt:
print("shut")
print("Stop Threads")
posepipeline.Stop()
#CommandLine.Stop()
t1.join()
print("Finished :)")
#Only create log if full process was done
if posepipeline.posescalculator.t is not None:
#Create the folder
posepipeline.folder = FileIO.CreateFolder("./Logs/",suffix=FileIO.GetAnimalName())
#print("DATA IS")
#print(data)
#saves pipeline configuration on the outputfolder
print(posepipeline.folder)
FileIO.putFileWithJson(data,"pipeline",posepipeline.folder+"/")
datatosave= {"R":posepipeline.posescalculator.R,"t":posepipeline.posescalculator.t}
#compute the corners of the cangalho
if data['model']['type']=='CANGALHO' or data['model']['type']=='SYNTH_CANGALHO2':
arucoModel = {"R":posepipeline.posescalculator.R,"t":posepipeline.posescalculator.t}
corners = aruco.ComputeCorners(state['arucodata'],arucoModel)
if(view==True):
visu.SeePositions(corners)
datatosave['corners']=corners
if(view):
#see and save resulting scene
print(posepipeline.posescalculator.R)
print(posepipeline.posescalculator.t)
visu.ViewRefs(posepipeline.posescalculator.R,posepipeline.posescalculator.t,refSize=0.1,showRef=True,saveImg=True,saveName=posepipeline.folder+"/screenshot.jpg")
#record r and t
if data["model"]["record"]==True:
recordeddata={
"R":posepipeline.posescalculator.recordedRs,
"T":posepipeline.posescalculator.recordedTs
}
FileIO.saveAsPickle("/recorded",recordeddata,posepipeline.folder,False,False)
if data['input']['type']=='ROS' or data['input']['type']=='ROS_GATHER':
datatosave['camnames']=posepipeline.imgStream.camNames
FileIO.saveAsPickle("/poses",datatosave,posepipeline.folder,False,False)
return posepipeline.folder
if __name__ == '__main__':
path = sys.argv[1:]
if len(path)==0:
raise Exception('Please specify a Pipeline File')
main(path[0])