forked from jinkunw/mhjcbb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathda.h
762 lines (666 loc) · 25.5 KB
/
da.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
#pragma once
#include <gtsam/base/FastVector.h>
#include <gtsam/inference/Key.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/NoiseModel.h>
#define USE_FAST_MARGINALS
#ifdef USE_FAST_MARGINALS
#include <gtsam/nonlinear/FastMarginals.h>
#endif
#include <gtsam/nonlinear/ISAM2.h>
#include <gtsam/nonlinear/Marginals.h>
#include <gtsam/sam/BearingRangeFactor.h>
#include <Eigen/Cholesky>
#include <queue>
#include <stack>
namespace gtsam {
namespace da {
using symbol_shorthand::L;
using symbol_shorthand::X;
/// Chi-square inverse cumulative distribution function
double chi2inv(double P, unsigned int dim);
struct Innovation {
typedef std::shared_ptr<Innovation> shared_ptr;
Key l; // landmark key
Vector error; // residual error
Matrix Hx; // Jacobian w.r.t. pose
Matrix Hl; // Jacobian w.r.t. point
Vector sigmas; // measurement noise
double md; // Mahalanobis distance
};
template <typename POSE, typename POINT,
typename BEARING = typename Bearing<POSE, POINT>::result_type,
typename RANGE = typename Range<POSE, POINT>::result_type>
class JCBB {
public:
/// Initialize JCBB with a complete factor graph and an estimate.
/// Assume
/// 1. Pose and landmark keys are represented by X(x) and L(l).
/// 2. Pose keys are incremental from 0 to N.
/// 3. The associated landmark keys are also incremental.
JCBB(const ISAM2 &isam2, double prob)
: values_(isam2.calculateEstimate()), prob_(prob),
#ifdef USE_FAST_MARGINALS
marginals_(isam2) {
#else
marginals_(isam2.getFactorsUnsafe(), values_) {
#endif
for (Key key : values_.keys())
if (symbolChr(key) == 'l') keys_.push_back(key);
// Find the latest pose key
for (int x = 0;; ++x) {
if (!values_.exists(X(x))) {
assert(x > 0);
x0_ = X(x - 1);
pose0_ = values_.at<POSE>(x0_);
break;
}
}
}
/// Add current measurement with noise model.
/// Only diagonal noise model is supported.
void add(BEARING measuredBearing, RANGE measuredRange,
const SharedNoiseModel &model) {
// Search landmark candidates that is likely to be independently compatible.
innovations_.push_back({});
for (Key l : keys_) {
POINT point = values_.at<POINT>(l);
BearingRangeFactor<POSE, POINT> factor(x0_, l, measuredBearing, measuredRange, model);
Innovation::shared_ptr inn(new Innovation);
inn->l = l;
inn->error = factor.evaluateError(pose0_, point, inn->Hx, inn->Hl);
inn->sigmas = model->sigmas();
inn->md = model->distance(inn->error);
if (jc_(inn)) {
innovations_.back().push_back(inn);
}
}
}
/// Perform JCBB data association.
/// Return landmark keys for measurements.
KeyVector match() {
KeyVector keys;
keys.push_back(x0_);
for (const std::vector<Innovation::shared_ptr> &obs_inn : innovations_) {
for (const Innovation::shared_ptr &inn : obs_inn)
if (std::find(keys.begin(), keys.end(), inn->l) == keys.end())
keys.push_back(inn->l);
}
#ifndef USE_FAST_MARGINALS
joint_marginals_ = marginals_.jointMarginalCovariance(keys);
#endif
// Sort candidate landmarks by its residual.
// A heuristic to quickly obtain a lower bound.
for (FastVector<Innovation::shared_ptr> &linn : innovations_)
std::sort(linn.begin(), linn.end(),
[](Innovation::shared_ptr lhs, Innovation::shared_ptr rhs) {
return lhs->md < rhs->md;
});
// Recursive search in interpretation tree starting with an empty hypothesis.
jcbb({});
// Map innovations to keys.
KeyVector matched_keys;
int new_l = 0;
for (Innovation::shared_ptr &inn : best_hypothesis_)
matched_keys.push_back(inn ? inn->l : keys_.size() + new_l++);
return matched_keys;
}
private:
void jcbb(const FastVector<Innovation::shared_ptr> &hypothesis) {
int k = hypothesis.size();
int h = pairings(hypothesis);
if (k == innovations_.size()) {
if (best_hypothesis_.empty() || h > pairings(best_hypothesis_))
best_hypothesis_ = hypothesis;
return;
}
FastSet<Key> existing;
for (const Innovation::shared_ptr &inn : hypothesis)
if (inn) existing.insert(inn->l);
for (Innovation::shared_ptr &inn : innovations_[k]) {
// Make sure keys are used only once.
if (existing.find(inn->l) != existing.end()) continue;
// Get remaining keys if we associate k-th measurement with inn->l.
FastSet<Key> remaining;
for (int j = k + 1; j < innovations_.size(); ++j) {
for (Innovation::shared_ptr &future_inn : innovations_[j]) {
if (future_inn->l != inn->l &&
existing.find(future_inn->l) == existing.end())
remaining.insert(future_inn->l);
}
}
// Calculate the max pairings (upper bound) we can achieve with this association.
int max_remaining =
std::min(remaining.size(), innovations_.size() - k - 1);
// Stop searching if upper bound <= current lower bound.
if (h + 1 + max_remaining <= pairings(best_hypothesis_)) continue;
// Keep searching in interpretation tree if current hypothesis is JC.
FastVector<Innovation::shared_ptr> extended = hypothesis;
extended.push_back(inn);
if (jc(extended)) jcbb(extended);
}
// Same as above but with a null pairing.
FastSet<Key> remaining;
for (int j = k + 1; j < innovations_.size(); ++j) {
for (Innovation::shared_ptr &future_inn : innovations_[j]) {
if (existing.find(future_inn->l) == existing.end())
remaining.insert(future_inn->l);
}
}
int max_remaining = std::min(remaining.size(), innovations_.size() - k - 1);
if (best_hypothesis_.empty() ||
h + max_remaining > pairings(best_hypothesis_)) {
FastVector<Innovation::shared_ptr> extended = hypothesis;
extended.push_back(nullptr);
jcbb(extended);
}
}
/// Calculate non-null pairings in the hypothesis.
int pairings(const FastVector<Innovation::shared_ptr> &hypothesis) const {
return std::count_if(
hypothesis.cbegin(), hypothesis.cend(),
[](const Innovation::shared_ptr &inn) { return inn != nullptr; });
}
/// Fast independent compatibility (IC) test.
bool jc_(const Innovation::shared_ptr &inn) const {
// Assume two variables are independent
Matrix S = Matrix::Zero(5, 5);
S.block<3, 3>(0, 0) = marginals_.marginalCovariance(x0_);
S.block<2, 2>(3, 3) = marginals_.marginalCovariance(inn->l);
Matrix H(2, 5);
H.block<2, 3>(0, 0) = inn->Hx;
H.block<2, 2>(0, 3) = inn->Hl;
Matrix R = inn->sigmas.asDiagonal();
Vector e = inn->error;
Matrix C = H * S * H.transpose() + R * R;
double chi2 = e.transpose() * C.llt().solve(e);
return chi2 < chi2inv(prob_, 2);
}
/// Joint compatibility (JC) test.
bool jc(const FastVector<Innovation::shared_ptr> &hypothesis) const {
if (hypothesis.empty() || pairings(hypothesis) == 0)
return true;
// Calculate covariance from GTSAM joint marginals.
// TODO: incremental update
int XD = POSE::dimension, LD = POINT::dimension,
FD = BearingRange<POSE, POINT>::dimension;
int N = XD, M = 0;
KeyVector keys;
keys.push_back(x0_);
for (const Innovation::shared_ptr &inn : hypothesis) {
if (!inn) continue;
keys.push_back(inn->l);
N += LD;
M += FD;
}
Matrix S(N, N);
#ifdef USE_FAST_MARGINALS
S = marginals_.jointMarginalCovariance(keys);
#else
for (int i = 0, p = 0; i < keys.size(); ++i) {
Key ki = keys[i];
int pi = values_.at(ki).dim();
for (int j = i, q = p; j < keys.size(); ++j) {
Key kj = keys[j];
int qj = values_.at(kj).dim();
S.block(p, q, pi, qj) = joint_marginals_.at(ki, kj);
q += qj;
}
p += pi;
}
S.triangularView<Eigen::Lower>() = S.transpose();
#endif
Matrix H = Matrix::Zero(M, N);
Matrix R = Matrix::Zero(M, M);
Vector e(M);
for (int i = 0, j = 0; i < hypothesis.size(); ++i) {
if (!hypothesis[i]) continue;
H.block(j * FD, 0, FD, XD) = hypothesis[i]->Hx;
H.block(j * FD, XD + j * LD, FD, LD) = hypothesis[i]->Hl;
R.block(j * FD, j * FD, FD, FD) = hypothesis[i]->sigmas.asDiagonal();
e.segment(j * FD, FD) = hypothesis[i]->error;
j += 1;
}
Matrix C = H * S * H.transpose() + R * R;
double chi2 = e.transpose() * C.llt().solve(e);
return chi2 < chi2inv(prob_, M);
}
private:
double prob_;
FastVector<FastVector<Innovation::shared_ptr>> innovations_;
FastVector<Innovation::shared_ptr> best_hypothesis_;
KeyVector keys_;
Values values_;
Key x0_;
POSE pose0_;
#ifdef USE_FAST_MARGINALS
mutable FastMarginals marginals_;
#else
Marginals marginals_;
JointMarginal joint_marginals_;
#endif
};
template <typename POSE, typename POINT,
typename BEARING = typename Bearing<POSE, POINT>::result_type,
typename RANGE = typename Range<POSE, POINT>::result_type>
class MHJCBB {
private:
/// Match information
struct MatchInfo {
int track; // track index
std::vector<Innovation::shared_ptr> hypothesis; // hypothesis
int num_pairings; // current pairings
double md; // chi-squared error
POSE pose; // posterior pose after update
Matrix covariance; // posterior covariance
};
/// Compare two matching results.
struct MatchInfoCmp {
bool operator()(const MatchInfo &a, const MatchInfo &b) const {
return (a.num_pairings > b.num_pairings) ||
((a.num_pairings == b.num_pairings) && (a.md < b.md));
}
};
/// Track information
struct TrackInfo {
int index; // track index
FastVector<FastVector<Innovation::shared_ptr>> innovations; // candidates for each measurement
KeyVector keys; // Same as members in JCBB
#ifdef USE_FAST_MARGINALS
mutable FastMarginals marginals;
TrackInfo(const ISAM2 &isam2) : marginals(isam2) {}
#else
Marginals marginals;
JointMarginal joint_marginals;
#endif
Values values;
Key x0;
POSE pose0;
std::stack<MatchInfo> stack; // use stack to search in the interpretation tree
};
public:
/// MHJCBB
MHJCBB(int max_tracks,
double prob,
double posterior_pose_md_threshold) // threshold used for screening match
: max_tracks_(max_tracks),
prob_(prob),
posterior_pose_md_threshold_(posterior_pose_md_threshold) {}
/// Initialize a track with a complete factor graph and estimate.
/// Call multiple times if there are multiple tracks.
void initialize(const ISAM2 &isam2) {
#ifdef USE_FAST_MARGINALS
tracks_.push_back(TrackInfo(isam2));
TrackInfo &track = tracks_.back();
track.values = isam2.calculateEstimate();
#else
tracks_.push_back(TrackInfo());
TrackInfo &track = tracks_.back();
track.values = isam2.calculateEstimate();
track.marginals = Marginals(isam2.getFactorsUnsafe(), track.values);
#endif
for (Key key : track.values.keys())
if (symbolChr(key) == 'l') track.keys.push_back(key);
for (int x = 0;; ++x) {
if (!track.values.exists(X(x))) {
assert(x > 0);
track.x0 = X(x - 1);
track.pose0 = track.values.template at<POSE>(track.x0);
break;
}
}
track.stack.push(MatchInfo());
track.stack.top().track = tracks_.size() - 1;
track.stack.top().pose = track.pose0;
track.stack.top().covariance = track.marginals.marginalCovariance(track.x0);
}
/// Add measurement to every track.
void add(BEARING measuredBearing, RANGE measuredRange,
const SharedNoiseModel &model) {
for (TrackInfo &track : tracks_) {
track.innovations.push_back({});
for (Key l : track.keys) {
POINT point = track.values.template at<POINT>(l);
BearingRangeFactor<POSE, POINT> factor(track.x0, l, measuredBearing, measuredRange, model);
Innovation::shared_ptr inn(new Innovation);
inn->l = l;
inn->error = factor.evaluateError(track.pose0, point, inn->Hx, inn->Hl);
inn->sigmas = model->sigmas();
inn->md = model->distance(inn->error);
if (jc_(track, inn))
track.innovations.back().push_back(inn);
}
}
}
/// MHJCBB match
void match() {
for (TrackInfo &track : tracks_) {
// Same as JCBB
KeyVector keys;
keys.push_back(track.x0);
for (const std::vector<Innovation::shared_ptr> &obs_inn : track.innovations) {
for (const Innovation::shared_ptr &inn : obs_inn)
if (std::find(keys.begin(), keys.end(), inn->l) == keys.end())
keys.push_back(inn->l);
}
#ifndef USE_FAST_MARGINALS
track.joint_marginals = track.marginals.jointMarginalCovariance(keys);
#endif
// Sort in reverse order due to stack.
for (FastVector<Innovation::shared_ptr> &linn : track.innovations)
std::sort(linn.begin(), linn.end(),
[](Innovation::shared_ptr lhs, Innovation::shared_ptr rhs) {
return lhs->md > rhs->md;
});
}
mhjcbb();
// Map to keys.
while (!best_hypotheses_.empty()) {
MatchInfo mi = best_hypotheses_.top();
best_hypotheses_.pop();
KeyVector matched_keys;
int new_l = 0;
for (const Innovation::shared_ptr &inn : mi.hypothesis)
matched_keys.push_back(inn ? inn->l : tracks_[mi.track].keys.size() + new_l++);
result_.insert(result_.begin(), std::make_pair(mi.track, matched_keys));
}
}
/// Access matching result.
int size() const { return result_.size(); }
std::pair<int, KeyVector> get(int i) const { return result_[i]; }
private:
/// MHJCBB search in interpretation forest.
void mhjcbb() {
int tracks_done = 0;
int i = 0;
while (tracks_done < max_tracks_) {
for (TrackInfo &ti : tracks_) {
// JCBB will return when one complete hypothesis is met.
tracks_done += jcbb(ti);
}
}
screen2();
}
/// JCBB in a track.
/// Return true if the search is done.
bool jcbb(TrackInfo &ti) {
while (!ti.stack.empty()) {
MatchInfo mi = ti.stack.top();
ti.stack.pop();
int k = mi.hypothesis.size();
int h = pairings(mi.hypothesis);
if (k == ti.innovations.size()) {
if (jc(ti, mi) && screen1(mi)) {
best_hypotheses_.push(mi);
if (best_hypotheses_.size() > max_tracks_)
best_hypotheses_.pop();
return false;
}
} else {
FastSet<Key> existing;
for (const Innovation::shared_ptr &inn : mi.hypothesis)
if (inn) existing.insert(inn->l);
FastSet<Key> remaining;
for (int j = k + 1; j < ti.innovations.size(); ++j) {
for (Innovation::shared_ptr &future_inn : ti.innovations[j]) {
if (existing.find(future_inn->l) == existing.end())
remaining.insert(future_inn->l);
}
}
int max_remaining = std::min(remaining.size(), ti.innovations.size() - k - 1);
if (best_hypotheses_.size() < max_tracks_ ||
h + max_remaining >= best_hypotheses_.top().num_pairings) {
MatchInfo extended = mi;
extended.hypothesis.push_back(nullptr);
ti.stack.push(extended);
}
for (Innovation::shared_ptr &inn : ti.innovations[k]) {
if (existing.find(inn->l) != existing.end()) continue;
FastSet<Key> remaining;
for (int j = k + 1; j < ti.innovations.size(); ++j) {
for (Innovation::shared_ptr &future_inn : ti.innovations[j]) {
if (future_inn->l != inn->l &&
existing.find(future_inn->l) == existing.end())
remaining.insert(future_inn->l);
}
}
int max_remaining =
std::min(remaining.size(), ti.innovations.size() - k - 1);
int future_pairings = h + 1 + max_remaining;
if (best_hypotheses_.size() == max_tracks_) {
int min_pairings = best_hypotheses_.top().num_pairings;
if (future_pairings < min_pairings)
continue;
if (best_hypotheses_.size() == ti.innovations.size() &&
future_pairings == min_pairings && mi.md > best_hypotheses_.top().md)
continue;
}
MatchInfo extended = mi;
extended.hypothesis.push_back(inn);
extended.num_pairings += 1;
if (jc(ti, mi)) {
ti.stack.push(extended);
}
}
}
}
return true;
}
/// Remove redundant matching result from the same track.
bool screen1(const MatchInfo &mi) {
decltype(best_hypotheses_) copy;
bool valid = true;
while (!best_hypotheses_.empty()) {
MatchInfo existing_mi = best_hypotheses_.top();
best_hypotheses_.pop();
if (!valid || mi.track != existing_mi.track) {
copy.push(existing_mi);
continue;
}
Vector e = existing_mi.pose.localCoordinates(mi.pose);
double md = e.transpose() * existing_mi.covariance.inverse() * e;
if (sqrt(md) < posterior_pose_md_threshold_) {
if (MatchInfoCmp()(existing_mi, mi)) {
copy.push(existing_mi);
valid = false;
}
} else {
copy.push(existing_mi);
}
}
best_hypotheses_ = copy;
return valid;
}
/// Remove redundant empty matching result.
void screen2() {
decltype(best_hypotheses_) copy;
FastVector<MatchInfo> null, nonnull;
while (!best_hypotheses_.empty()) {
MatchInfo mi = best_hypotheses_.top();
best_hypotheses_.pop();
if (mi.num_pairings) {
copy.push(mi);
nonnull.push_back(mi);
} else {
null.push_back(mi);
}
}
for (const MatchInfo &mi1 : null) {
bool valid = true;
for (const MatchInfo &mi2 : nonnull) {
Vector e = mi2.pose.localCoordinates(mi1.pose);
double md = e.transpose() * mi2.covariance.inverse() * e;
if (sqrt(md) < posterior_pose_md_threshold_) {
valid = false;
break;
}
}
if (valid)
copy.push(mi1);
}
best_hypotheses_ = copy;
}
int pairings(const FastVector<Innovation::shared_ptr> &hypothesis) const {
return std::count_if(
hypothesis.cbegin(), hypothesis.cend(),
[](const Innovation::shared_ptr &inn) { return inn != nullptr; });
}
bool jc_(const TrackInfo &ti, const Innovation::shared_ptr &inn) const {
Matrix S = Matrix::Zero(5, 5);
S.block<3, 3>(0, 0) = ti.marginals.marginalCovariance(ti.x0);
S.block<2, 2>(3, 3) = ti.marginals.marginalCovariance(inn->l);
Matrix H(2, 5);
H.block<2, 3>(0, 0) = inn->Hx;
H.block<2, 2>(0, 3) = inn->Hl;
Matrix R = inn->sigmas.asDiagonal();
Vector e = inn->error;
Matrix C = H * S * H.transpose() + R * R;
double chi2 = e.transpose() * C.llt().solve(e);
return chi2 < chi2inv(prob_, 2);
}
/// JC test.
/// Update posterior pose and covariance in MatchInfo.
bool jc(const TrackInfo &ti, MatchInfo &mi) const {
if (!mi.num_pairings) return true;
int XD = POSE::dimension, LD = POINT::dimension,
FD = BearingRange<POSE, POINT>::dimension;
int N = XD, M = 0;
KeyVector keys;
keys.push_back(ti.x0);
for (const Innovation::shared_ptr &inn : mi.hypothesis) {
if (!inn) continue;
keys.push_back(inn->l);
N += LD;
M += FD;
}
Matrix S(N, N);
#ifdef USE_FAST_MARGINALS
S = ti.marginals.jointMarginalCovariance(keys);
#else
for (int i = 0, p = 0; i < keys.size(); ++i) {
Key ki = keys[i];
int pi = ti.values.at(ki).dim();
for (int j = i, q = p; j < keys.size(); ++j) {
Key kj = keys[j];
int qj = ti.values.at(kj).dim();
S.block(p, q, pi, qj) = ti.joint_marginals.at(ki, kj);
q += qj;
}
p += pi;
}
S.triangularView<Eigen::Lower>() = S.transpose();
#endif
Matrix H = Matrix::Zero(M, N);
Matrix R = Matrix::Zero(M, M);
Vector e(M);
for (int i = 0, j = 0; i < mi.hypothesis.size(); ++i) {
if (!mi.hypothesis[i]) continue;
H.block(j * FD, 0, FD, XD) = mi.hypothesis[i]->Hx;
H.block(j * FD, XD + j * LD, FD, LD) = mi.hypothesis[i]->Hl;
R.block(j * FD, j * FD, FD, FD) = mi.hypothesis[i]->sigmas.asDiagonal();
e.segment(j * FD, FD) = mi.hypothesis[i]->error;
j += 1;
}
// update step in Kalman filter
Matrix C = H * S * H.transpose() + R * R;
Matrix C_1 = C.inverse();
Matrix K = S * H.transpose() * C_1;
Vector d = -K * e;
mi.pose = ti.values.template at<POSE>(ti.x0).retract(d.head(XD));
mi.covariance = S.topLeftCorner(XD, XD) - K.topRows(XD) * H * S.leftCols(XD);
double chi2 = e.transpose() * C_1 * e;
return chi2 < chi2inv(prob_, M);
}
private:
int max_tracks_;
double prob_;
double posterior_pose_md_threshold_;
FastVector<TrackInfo> tracks_;
std::priority_queue<MatchInfo, std::vector<MatchInfo>, MatchInfoCmp> best_hypotheses_;
FastVector<std::pair<int, KeyVector>> result_;
};
double normalCDF(double u) {
static const double a[5] = {1.161110663653770e-002, 3.951404679838207e-001,
2.846603853776254e+001, 1.887426188426510e+002,
3.209377589138469e+003};
static const double b[5] = {1.767766952966369e-001, 8.344316438579620e+000,
1.725514762600375e+002, 1.813893686502485e+003,
8.044716608901563e+003};
static const double c[9] = {
2.15311535474403846e-8, 5.64188496988670089e-1, 8.88314979438837594e00,
6.61191906371416295e01, 2.98635138197400131e02, 8.81952221241769090e02,
1.71204761263407058e03, 2.05107837782607147e03, 1.23033935479799725E03};
static const double d[9] = {
1.00000000000000000e00, 1.57449261107098347e01, 1.17693950891312499e02,
5.37181101862009858e02, 1.62138957456669019e03, 3.29079923573345963e03,
4.36261909014324716e03, 3.43936767414372164e03, 1.23033935480374942e03};
static const double p[6] = {1.63153871373020978e-2, 3.05326634961232344e-1,
3.60344899949804439e-1, 1.25781726111229246e-1,
1.60837851487422766e-2, 6.58749161529837803e-4};
static const double q[6] = {1.00000000000000000e00, 2.56852019228982242e00,
1.87295284992346047e00, 5.27905102951428412e-1,
6.05183413124413191e-2, 2.33520497626869185e-3};
double y, z;
y = fabs(u);
// clang-format off
if (y <= 0.46875 * 1.4142135623730950488016887242097) {
/* evaluate erf() for |u| <= sqrt(2)*0.46875 */
z = y * y;
y = u * ((((a[0] * z + a[1]) * z + a[2]) * z + a[3]) * z + a[4]) / ((((b[0] * z + b[1]) * z + b[2]) * z + b[3]) * z + b[4]);
return 0.5 + y;
}
z = exp(-y * y / 2) / 2;
if (y <= 4.0) {
/* evaluate erfc() for sqrt(2)*0.46875 <= |u| <= sqrt(2)*4.0 */
y = y / 1.4142135623730950488016887242097;
y = ((((((((c[0] * y + c[1]) * y + c[2]) * y + c[3]) * y + c[4]) * y + c[5]) * y + c[6]) * y + c[7]) * y + c[8]) / ((((((((d[0] * y + d[1]) * y + d[2]) * y + d[3]) * y + d[4]) * y + d[5]) * y + d[6]) * y + d[7]) * y + d[8]);
y = z * y;
} else {
/* evaluate erfc() for |u| > sqrt(2)*4.0 */
z = z * 1.4142135623730950488016887242097 / y;
y = 2 / (y * y);
y = y * (((((p[0] * y + p[1]) * y + p[2]) * y + p[3]) * y + p[4]) * y + p[5]) / (((((q[0] * y + q[1]) * y + q[2]) * y + q[3]) * y + q[4]) * y + q[5]);
y = z * (0.564189583547756286948 - y);
}
return (u < 0.0 ? y : 1 - y);
}
double normalQuantile(double p) {
double q, t, u;
static const double a[6] = {-3.969683028665376e+01, 2.209460984245205e+02,
-2.759285104469687e+02, 1.383577518672690e+02,
-3.066479806614716e+01, 2.506628277459239e+00};
static const double b[5] = {-5.447609879822406e+01, 1.615858368580409e+02,
-1.556989798598866e+02, 6.680131188771972e+01,
-1.328068155288572e+01};
static const double c[6] = {-7.784894002430293e-03, -3.223964580411365e-01,
-2.400758277161838e+00, -2.549732539343734e+00,
4.374664141464968e+00, 2.938163982698783e+00};
static const double d[4] = {7.784695709041462e-03, 3.224671290700398e-01,
2.445134137142996e+00, 3.754408661907416e+00};
q = std::min(p, 1 - p);
if (q > 0.02425) {
/* Rational approximation for central region. */
u = q - 0.5;
t = u * u;
u = u * (((((a[0] * t + a[1]) * t + a[2]) * t + a[3]) * t + a[4]) * t + a[5]) / (((((b[0] * t + b[1]) * t + b[2]) * t + b[3]) * t + b[4]) * t + 1);
} else {
/* Rational approximation for tail region. */
t = sqrt(-2 * log(q));
u = (((((c[0] * t + c[1]) * t + c[2]) * t + c[3]) * t + c[4]) * t + c[5]) / ((((d[0] * t + d[1]) * t + d[2]) * t + d[3]) * t + 1);
}
/* The relative error of the approximation has absolute value less
than 1.15e-9. One iteration of Halley's rational method (third
order) gives full machine precision... */
t = normalCDF(u) - q; /* error */
t = t * 2.506628274631000502415765284811 * exp(u * u / 2); /* f(u)/df(u) */
u = u - t / (1 + u * t / 2); /* Halley's method */
return (p > 0.5 ? -u : u);
}
double chi2inv(double P, unsigned int dim) {
if (P == 0)
return 0;
else
return dim * pow(1.0 - 2.0 / (9 * dim) + sqrt(2.0 / (9 * dim)) * normalQuantile(P), 3);
}
} // namespace da
} // namespace gtsam