-
Notifications
You must be signed in to change notification settings - Fork 1
/
nm_props_gr.v
47 lines (39 loc) · 1.63 KB
/
nm_props_gr.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
(**************************************************************)
(* Copyright Dominique Larchey-Wendling [*] *)
(* Jean-François Monin [+] *)
(* *)
(* [*] Affiliation LORIA -- CNRS *)
(* [+] Affiliation VERIMAG - Univ. Grenoble-Alpes *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
Require Import Arith Lia Utf8. (* → λ ∀ ∃ ↔ ∧ ∨ ≤ ¬ *)
Require Import nm_graph_def nm_fun nm_props_def.
Set Implicit Arguments.
Theorem nm_equiv e D : e ~Ω nm e D.
Proof.
generalize (nm _ D) (nm_spec D); clear D.
induction 1 as [
|
| a b c y z nb nc na H1 IH1 H2 IH2 H3 IH3 ]; auto.
apply equiv_trans with (1 := in_eq_0 _ _ _ _ _),
equiv_trans with (2 := IH3),
in_eq_1; auto.
Qed.
Theorem nm_normal e D : normal (nm e D).
Proof.
generalize (nm _ D) (nm_spec D); clear D.
induction 1; auto.
Qed.
Hint Resolve ce_size_sub_2 ce_size_sub_3 ce_size_mono ce_size_smono_1 : core.
(** nm preserves the measure *)
Theorem nm_dec e D : ⟪nm e D⟫ ≤ ⟪e⟫.
Proof.
generalize (nm _ D) (nm_spec D); clear D.
induction 1 as [
| y ny z nz H1 IH1 H2 IH2
| a b c y z nb nc na H1 IH1 H2 IH2 H3 IH3 ]; auto.
apply le_trans with (1 := IH3),
le_trans with (2 := ce_size_special _ _ _ _ _); auto.
Qed.