forked from limegimlet/rladies_paris_ggplot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rladies_paris_ggplot.Rmd
263 lines (168 loc) · 3.82 KB
/
rladies_paris_ggplot.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
---
title: "R-Ladies intro to ggplot2 tutorial"
author: "Sarah Hosking"
date: "March 7, 2017"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
library(lubridate)
library(tidyverse)
library(GGally)
library(reshape2) #plot missing vals
theme_set(theme_bw())
```
# Paris Air Pollution
Because we all need a break from car, iris and most of all, election, data.
## Load Data
```{r}
airparif <- read_rds('airparif.rds')
dim(airparif)
```
```{r}
str(airparif)
```
```{r}
head(airparif)
```
```{r}
tail(airparif)
```
```{r}
summary(airparif)
```
## What are we looking at?
```{r}
names(airparif)
```
What the abbreviations mean:
* `PM25` = fine particulate < 2.5 mm
* `PM10` = fine particulate < 10 mm
* `03` = Ozone
* `NO2` = Nitrogen Dioxide (Azote)
* `CO` = Carbon monoxide
## Explore the data
### Plot a correlation matrix
```{r ggpairs}
# create a sample - ggpairs takes time.
set.seed(888)
sample <- subset(airparif, select = c(PM10, PM25, NO2, O3, month))
sample <- sample[sample(1:nrow(sample),1000),]
#ggpairs()
```
## Summarize and plot
First, need to prepare the data
```{r}
# Option 1: load the summarized data
#airparif.long <- read_rds("airparif_long.rds")
# Option 2: summarize data yourself
# airparif.long <- airparif %>%
# gather(,
# key = , value = ,
# na.rm = TRUE) %>%
# group_by() %>%
# summarise(mean = ,
# median = ,
# max =)
```
Now plot this new df
```{r}
```
## How many days at each pollution level?
```{r}
# Option 1: load the summarized data
#levels <- read_rds("levels.rds")
# Option 2: summarize data yourself
# First, load function to tag pollution levels
pollution.level <- function(x, lower = 0, upper = 100,
by = 25, sep = "-", above.char = "+") {
labs <- c("very low", "low", "medium", "high", "very high")
cut(floor(x),
breaks = c(seq(lower, upper, by = by), Inf),
right = FALSE,
labels = labs)
}
# Then complete this code
# levels <- airparif.long %>%
# group_by( ) %>%
# mutate_all(funs())
```
How many days at each level for each pollutant?
```{r}
# create a bar plot
# p <- ggplot(levels, aes(median, fill = pollutant))
# p + geom_bar()
```
Make this easier to read
```{r}
```
# BONUS STUFF (If we have time)
## Make plots prettier
```{r}
# only plot PM pollutants
# particles <- airparif.long %>%
# filter(pollutant %in% c('PM10', 'PM25'))
#
#
# p <- ggplot(particles, aes(date, mean))
#
# p +
# geom_line(aes(y = median, colour = pollutant)) +
# scale_x_date() +
# theme_
```
## qplot
`qplot` is part of `ggplot2`, and stands for "quick plots". Its syntax is similar to base plotting, and is less verbose than `ggplot()`.
```{r qplot hists}
qplot(PM10, data = airparif)
# increase bins
qplot(data = airparif, PM10, binwidth = 5)
```
It's meant, however, to work with vectors. Here's a demo.
```{r}
# qplot meant to work with vectors
a <- c('A', 'B', 'C')
b <- c(1, 2, 3)
# qplot
q <- qplot(a,b)
q
```
```{r}
# ggplot needs a dataframe
d <- data.frame(a,b)
# ggplot
p <- ggplot(data = d, aes(a,b)) +
geom_point()
p
```
```{r}
# change var
a <- c('X','Y','Z')
# with qplot
q
```
```{r}
# with ggplot
p
```
## Visualize missing values with ggplot
```{r}
# credit to:
# http://www.njtierney.com/r/missing%20data/rbloggers/2015/12/01/ggplot-missing-data/
missing.data <- function(x){
x %>%
is.na %>%
melt %>%
ggplot(data = .,
aes(x = Var2,
y = Var1)) +
geom_raster(aes(fill = value)) +
scale_fill_grey(name = "",
labels = c("Present","Missing")) +
theme_minimal() +
theme(axis.text.x = element_text(angle=45, vjust=0.5)) +
labs(x = "Variables in Dataset",
y = "Rows / observations")
}
#missing.data(airparif[,1:7])
```