forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
armstrong_numbers.py
98 lines (77 loc) · 2.84 KB
/
armstrong_numbers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
"""
An Armstrong number is equal to the sum of its own digits each raised to the
power of the number of digits.
For example, 370 is an Armstrong number because 3*3*3 + 7*7*7 + 0*0*0 = 370.
Armstrong numbers are also called Narcissistic numbers and Pluperfect numbers.
On-Line Encyclopedia of Integer Sequences entry: https://oeis.org/A005188
"""
PASSING = (1, 153, 370, 371, 1634, 24678051, 115132219018763992565095597973971522401)
FAILING: tuple = (-153, -1, 0, 1.2, 200, "A", [], {}, None)
def armstrong_number(n: int) -> bool:
"""
Return True if n is an Armstrong number or False if it is not.
>>> all(armstrong_number(n) for n in PASSING)
True
>>> any(armstrong_number(n) for n in FAILING)
False
"""
if not isinstance(n, int) or n < 1:
return False
# Initialization of sum and number of digits.
total = 0
number_of_digits = 0
temp = n
# Calculation of digits of the number
number_of_digits = len(str(n))
# Dividing number into separate digits and find Armstrong number
temp = n
while temp > 0:
rem = temp % 10
total += rem**number_of_digits
temp //= 10
return n == total
def pluperfect_number(n: int) -> bool:
"""Return True if n is a pluperfect number or False if it is not
>>> all(armstrong_number(n) for n in PASSING)
True
>>> any(armstrong_number(n) for n in FAILING)
False
"""
if not isinstance(n, int) or n < 1:
return False
# Init a "histogram" of the digits
digit_histogram = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
digit_total = 0
total = 0
temp = n
while temp > 0:
temp, rem = divmod(temp, 10)
digit_histogram[rem] += 1
digit_total += 1
for cnt, i in zip(digit_histogram, range(len(digit_histogram))):
total += cnt * i**digit_total
return n == total
def narcissistic_number(n: int) -> bool:
"""Return True if n is a narcissistic number or False if it is not.
>>> all(armstrong_number(n) for n in PASSING)
True
>>> any(armstrong_number(n) for n in FAILING)
False
"""
if not isinstance(n, int) or n < 1:
return False
expo = len(str(n)) # the power that all digits will be raised to
# check if sum of each digit multiplied expo times is equal to number
return n == sum(int(i) ** expo for i in str(n))
def main():
"""
Request that user input an integer and tell them if it is Armstrong number.
"""
num = int(input("Enter an integer to see if it is an Armstrong number: ").strip())
print(f"{num} is {'' if armstrong_number(num) else 'not '}an Armstrong number.")
print(f"{num} is {'' if narcissistic_number(num) else 'not '}an Armstrong number.")
print(f"{num} is {'' if pluperfect_number(num) else 'not '}an Armstrong number.")
if __name__ == "__main__":
import doctest
doctest.testmod()
main()