forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
haralick_descriptors.py
433 lines (356 loc) · 15 KB
/
haralick_descriptors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
"""
https://en.wikipedia.org/wiki/Image_texture
https://en.wikipedia.org/wiki/Co-occurrence_matrix#Application_to_image_analysis
"""
import imageio.v2 as imageio
import numpy as np
def root_mean_square_error(original: np.ndarray, reference: np.ndarray) -> float:
"""Simple implementation of Root Mean Squared Error
for two N dimensional numpy arrays.
Examples:
>>> root_mean_square_error(np.array([1, 2, 3]), np.array([1, 2, 3]))
0.0
>>> root_mean_square_error(np.array([1, 2, 3]), np.array([2, 2, 2]))
0.816496580927726
>>> root_mean_square_error(np.array([1, 2, 3]), np.array([6, 4, 2]))
3.1622776601683795
"""
return np.sqrt(((original - reference) ** 2).mean())
def normalize_image(
image: np.ndarray, cap: float = 255.0, data_type: np.dtype = np.uint8
) -> np.ndarray:
"""
Normalizes image in Numpy 2D array format, between ranges 0-cap,
as to fit uint8 type.
Args:
image: 2D numpy array representing image as matrix, with values in any range
cap: Maximum cap amount for normalization
data_type: numpy data type to set output variable to
Returns:
return 2D numpy array of type uint8, corresponding to limited range matrix
Examples:
>>> normalize_image(np.array([[1, 2, 3], [4, 5, 10]]),
... cap=1.0, data_type=np.float64)
array([[0. , 0.11111111, 0.22222222],
[0.33333333, 0.44444444, 1. ]])
>>> normalize_image(np.array([[4, 4, 3], [1, 7, 2]]))
array([[127, 127, 85],
[ 0, 255, 42]], dtype=uint8)
"""
normalized = (image - np.min(image)) / (np.max(image) - np.min(image)) * cap
return normalized.astype(data_type)
def normalize_array(array: np.ndarray, cap: float = 1) -> np.ndarray:
"""Normalizes a 1D array, between ranges 0-cap.
Args:
array: List containing values to be normalized between cap range.
cap: Maximum cap amount for normalization.
Returns:
return 1D numpy array, corresponding to limited range array
Examples:
>>> normalize_array(np.array([2, 3, 5, 7]))
array([0. , 0.2, 0.6, 1. ])
>>> normalize_array(np.array([[5], [7], [11], [13]]))
array([[0. ],
[0.25],
[0.75],
[1. ]])
"""
diff = np.max(array) - np.min(array)
return (array - np.min(array)) / (1 if diff == 0 else diff) * cap
def grayscale(image: np.ndarray) -> np.ndarray:
"""
Uses luminance weights to transform RGB channel to greyscale, by
taking the dot product between the channel and the weights.
Example:
>>> grayscale(np.array([[[108, 201, 72], [255, 11, 127]],
... [[56, 56, 56], [128, 255, 107]]]))
array([[158, 97],
[ 56, 200]], dtype=uint8)
"""
return np.dot(image[:, :, 0:3], [0.299, 0.587, 0.114]).astype(np.uint8)
def binarize(image: np.ndarray, threshold: float = 127.0) -> np.ndarray:
"""
Binarizes a grayscale image based on a given threshold value,
setting values to 1 or 0 accordingly.
Examples:
>>> binarize(np.array([[128, 255], [101, 156]]))
array([[1, 1],
[0, 1]])
>>> binarize(np.array([[0.07, 1], [0.51, 0.3]]), threshold=0.5)
array([[0, 1],
[1, 0]])
"""
return np.where(image > threshold, 1, 0)
def transform(
image: np.ndarray, kind: str, kernel: np.ndarray | None = None
) -> np.ndarray:
"""
Simple image transformation using one of two available filter functions:
Erosion and Dilation.
Args:
image: binarized input image, onto which to apply transformation
kind: Can be either 'erosion', in which case the :func:np.max
function is called, or 'dilation', when :func:np.min is used instead.
kernel: n x n kernel with shape < :attr:image.shape,
to be used when applying convolution to original image
Returns:
returns a numpy array with same shape as input image,
corresponding to applied binary transformation.
Examples:
>>> img = np.array([[1, 0.5], [0.2, 0.7]])
>>> img = binarize(img, threshold=0.5)
>>> transform(img, 'erosion')
array([[1, 1],
[1, 1]], dtype=uint8)
>>> transform(img, 'dilation')
array([[0, 0],
[0, 0]], dtype=uint8)
"""
if kernel is None:
kernel = np.ones((3, 3))
if kind == "erosion":
constant = 1
apply = np.max
else:
constant = 0
apply = np.min
center_x, center_y = (x // 2 for x in kernel.shape)
# Use padded image when applying convolotion
# to not go out of bounds of the original the image
transformed = np.zeros(image.shape, dtype=np.uint8)
padded = np.pad(image, 1, "constant", constant_values=constant)
for x in range(center_x, padded.shape[0] - center_x):
for y in range(center_y, padded.shape[1] - center_y):
center = padded[
x - center_x : x + center_x + 1, y - center_y : y + center_y + 1
]
# Apply transformation method to the centered section of the image
transformed[x - center_x, y - center_y] = apply(center[kernel == 1])
return transformed
def opening_filter(image: np.ndarray, kernel: np.ndarray | None = None) -> np.ndarray:
"""
Opening filter, defined as the sequence of
erosion and then a dilation filter on the same image.
Examples:
>>> img = np.array([[1, 0.5], [0.2, 0.7]])
>>> img = binarize(img, threshold=0.5)
>>> opening_filter(img)
array([[1, 1],
[1, 1]], dtype=uint8)
"""
if kernel is None:
np.ones((3, 3))
return transform(transform(image, "dilation", kernel), "erosion", kernel)
def closing_filter(image: np.ndarray, kernel: np.ndarray | None = None) -> np.ndarray:
"""
Opening filter, defined as the sequence of
dilation and then erosion filter on the same image.
Examples:
>>> img = np.array([[1, 0.5], [0.2, 0.7]])
>>> img = binarize(img, threshold=0.5)
>>> closing_filter(img)
array([[0, 0],
[0, 0]], dtype=uint8)
"""
if kernel is None:
kernel = np.ones((3, 3))
return transform(transform(image, "erosion", kernel), "dilation", kernel)
def binary_mask(
image_gray: np.ndarray, image_map: np.ndarray
) -> tuple[np.ndarray, np.ndarray]:
"""
Apply binary mask, or thresholding based
on bit mask value (mapping mask is binary).
Returns the mapped true value mask and its complementary false value mask.
Example:
>>> img = np.array([[[108, 201, 72], [255, 11, 127]],
... [[56, 56, 56], [128, 255, 107]]])
>>> gray = grayscale(img)
>>> binary = binarize(gray)
>>> morphological = opening_filter(binary)
>>> binary_mask(gray, morphological)
(array([[1, 1],
[1, 1]], dtype=uint8), array([[158, 97],
[ 56, 200]], dtype=uint8))
"""
true_mask, false_mask = image_gray.copy(), image_gray.copy()
true_mask[image_map == 1] = 1
false_mask[image_map == 0] = 0
return true_mask, false_mask
def matrix_concurrency(image: np.ndarray, coordinate: tuple[int, int]) -> np.ndarray:
"""
Calculate sample co-occurrence matrix based on input image
as well as selected coordinates on image.
Implementation is made using basic iteration,
as function to be performed (np.max) is non-linear and therefore
not callable on the frequency domain.
Example:
>>> img = np.array([[[108, 201, 72], [255, 11, 127]],
... [[56, 56, 56], [128, 255, 107]]])
>>> gray = grayscale(img)
>>> binary = binarize(gray)
>>> morphological = opening_filter(binary)
>>> mask_1 = binary_mask(gray, morphological)[0]
>>> matrix_concurrency(mask_1, (0, 1))
array([[0., 0.],
[0., 0.]])
"""
matrix = np.zeros([np.max(image) + 1, np.max(image) + 1])
offset_x, offset_y = coordinate
for x in range(1, image.shape[0] - 1):
for y in range(1, image.shape[1] - 1):
base_pixel = image[x, y]
offset_pixel = image[x + offset_x, y + offset_y]
matrix[base_pixel, offset_pixel] += 1
matrix_sum = np.sum(matrix)
return matrix / (1 if matrix_sum == 0 else matrix_sum)
def haralick_descriptors(matrix: np.ndarray) -> list[float]:
"""Calculates all 8 Haralick descriptors based on co-occurence input matrix.
All descriptors are as follows:
Maximum probability, Inverse Difference, Homogeneity, Entropy,
Energy, Dissimilarity, Contrast and Correlation
Args:
matrix: Co-occurence matrix to use as base for calculating descriptors.
Returns:
Reverse ordered list of resulting descriptors
Example:
>>> img = np.array([[[108, 201, 72], [255, 11, 127]],
... [[56, 56, 56], [128, 255, 107]]])
>>> gray = grayscale(img)
>>> binary = binarize(gray)
>>> morphological = opening_filter(binary)
>>> mask_1 = binary_mask(gray, morphological)[0]
>>> concurrency = matrix_concurrency(mask_1, (0, 1))
>>> haralick_descriptors(concurrency)
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
"""
# Function np.indices could be used for bigger input types,
# but np.ogrid works just fine
i, j = np.ogrid[0 : matrix.shape[0], 0 : matrix.shape[1]] # np.indices()
# Pre-calculate frequent multiplication and subtraction
prod = np.multiply(i, j)
sub = np.subtract(i, j)
# Calculate numerical value of Maximum Probability
maximum_prob = np.max(matrix)
# Using the definition for each descriptor individually to calculate its matrix
correlation = prod * matrix
energy = np.power(matrix, 2)
contrast = matrix * np.power(sub, 2)
dissimilarity = matrix * np.abs(sub)
inverse_difference = matrix / (1 + np.abs(sub))
homogeneity = matrix / (1 + np.power(sub, 2))
entropy = -(matrix[matrix > 0] * np.log(matrix[matrix > 0]))
# Sum values for descriptors ranging from the first one to the last,
# as all are their respective origin matrix and not the resulting value yet.
return [
maximum_prob,
correlation.sum(),
energy.sum(),
contrast.sum(),
dissimilarity.sum(),
inverse_difference.sum(),
homogeneity.sum(),
entropy.sum(),
]
def get_descriptors(
masks: tuple[np.ndarray, np.ndarray], coordinate: tuple[int, int]
) -> np.ndarray:
"""
Calculate all Haralick descriptors for a sequence of
different co-occurrence matrices, given input masks and coordinates.
Example:
>>> img = np.array([[[108, 201, 72], [255, 11, 127]],
... [[56, 56, 56], [128, 255, 107]]])
>>> gray = grayscale(img)
>>> binary = binarize(gray)
>>> morphological = opening_filter(binary)
>>> get_descriptors(binary_mask(gray, morphological), (0, 1))
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
"""
descriptors = np.array(
[haralick_descriptors(matrix_concurrency(mask, coordinate)) for mask in masks]
)
# Concatenate each individual descriptor into
# one single list containing sequence of descriptors
return np.concatenate(descriptors, axis=None)
def euclidean(point_1: np.ndarray, point_2: np.ndarray) -> np.float32:
"""
Simple method for calculating the euclidean distance between two points,
with type np.ndarray.
Example:
>>> a = np.array([1, 0, -2])
>>> b = np.array([2, -1, 1])
>>> euclidean(a, b)
3.3166247903554
"""
return np.sqrt(np.sum(np.square(point_1 - point_2)))
def get_distances(descriptors: np.ndarray, base: int) -> list[tuple[int, float]]:
"""
Calculate all Euclidean distances between a selected base descriptor
and all other Haralick descriptors
The resulting comparison is return in decreasing order,
showing which descriptor is the most similar to the selected base.
Args:
descriptors: Haralick descriptors to compare with base index
base: Haralick descriptor index to use as base when calculating respective
euclidean distance to other descriptors.
Returns:
Ordered distances between descriptors
Example:
>>> index = 1
>>> img = np.array([[[108, 201, 72], [255, 11, 127]],
... [[56, 56, 56], [128, 255, 107]]])
>>> gray = grayscale(img)
>>> binary = binarize(gray)
>>> morphological = opening_filter(binary)
>>> get_distances(get_descriptors(
... binary_mask(gray, morphological), (0, 1)),
... index)
[(0, 0.0), (1, 0.0), (2, 0.0), (3, 0.0), (4, 0.0), (5, 0.0), \
(6, 0.0), (7, 0.0), (8, 0.0), (9, 0.0), (10, 0.0), (11, 0.0), (12, 0.0), \
(13, 0.0), (14, 0.0), (15, 0.0)]
"""
distances = np.array(
[euclidean(descriptor, descriptors[base]) for descriptor in descriptors]
)
# Normalize distances between range [0, 1]
normalized_distances: list[float] = normalize_array(distances, 1).tolist()
enum_distances = list(enumerate(normalized_distances))
enum_distances.sort(key=lambda tup: tup[1], reverse=True)
return enum_distances
if __name__ == "__main__":
# Index to compare haralick descriptors to
index = int(input())
q_value_list = [int(value) for value in input().split()]
q_value = (q_value_list[0], q_value_list[1])
# Format is the respective filter to apply,
# can be either 1 for the opening filter or else for the closing
parameters = {"format": int(input()), "threshold": int(input())}
# Number of images to perform methods on
b_number = int(input())
files, descriptors = [], []
for _ in range(b_number):
file = input().rstrip()
files.append(file)
# Open given image and calculate morphological filter,
# respective masks and correspondent Harralick Descriptors.
image = imageio.imread(file).astype(np.float32)
gray = grayscale(image)
threshold = binarize(gray, parameters["threshold"])
morphological = (
opening_filter(threshold)
if parameters["format"] == 1
else closing_filter(threshold)
)
masks = binary_mask(gray, morphological)
descriptors.append(get_descriptors(masks, q_value))
# Transform ordered distances array into a sequence of indexes
# corresponding to original file position
distances = get_distances(np.array(descriptors), index)
indexed_distances = np.array(distances).astype(np.uint8)[:, 0]
# Finally, print distances considering the Haralick descriptions from the base
# file to all other images using the morphology method of choice.
print(f"Query: {files[index]}")
print("Ranking:")
for idx, file_idx in enumerate(indexed_distances):
print(f"({idx}) {files[file_idx]}", end="\n")