-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
demo.py
220 lines (163 loc) · 5.85 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Sample application to demo the `TextGraphs` library.
see copyright/license https://huggingface.co/spaces/DerwenAI/textgraphs/blob/main/README.md
"""
import asyncio
import sys # pylint: disable=W0611
import traceback
import time
import typing
from icecream import ic # pylint: disable=E0401
from pyinstrument import Profiler # pylint: disable=E0401
import matplotlib.pyplot as plt # pylint: disable=E0401
import pandas as pd # pylint: disable=E0401
import textgraphs
if __name__ == "__main__":
SRC_TEXT: str = """
Werner Herzog is a remarkable filmmaker and an intellectual originally from Germany, the son of Dietrich Herzog.
After the war, Werner fled to America to become famous.
"""
## set up
## NB: profiler raises handler exceptions when `concur = False`
debug: bool = False # True
concur: bool = True # False
profile: bool = True # False
if profile:
profiler: Profiler = Profiler()
profiler.start()
try:
start_time: float = time.time()
tg: textgraphs.TextGraphs = textgraphs.TextGraphs(
factory = textgraphs.PipelineFactory(
spacy_model = textgraphs.SPACY_MODEL,
ner = None, #textgraphs.NERSpanMarker(),
kg = textgraphs.KGWikiMedia(
spotlight_api = textgraphs.DBPEDIA_SPOTLIGHT_API,
dbpedia_search_api = textgraphs.DBPEDIA_SEARCH_API,
dbpedia_sparql_api = textgraphs.DBPEDIA_SPARQL_API,
wikidata_api = textgraphs.WIKIDATA_API,
),
infer_rels = [
textgraphs.InferRel_OpenNRE(
model = textgraphs.OPENNRE_MODEL,
max_skip = textgraphs.MAX_SKIP,
min_prob = textgraphs.OPENNRE_MIN_PROB,
),
textgraphs.InferRel_Rebel(
lang = "en_XX",
mrebel_model = textgraphs.MREBEL_MODEL,
),
],
),
)
duration: float = round(time.time() - start_time, 3)
print(f"{duration:7.3f} sec: set up")
## NLP parse
start_time = time.time()
pipe: textgraphs.Pipeline = tg.create_pipeline(
SRC_TEXT.strip(),
)
duration = round(time.time() - start_time, 3)
print(f"{duration:7.3f} sec: parse text")
## collect graph elements from the parse
start_time = time.time()
tg.collect_graph_elements(
pipe,
debug = debug,
)
duration = round(time.time() - start_time, 3)
print(f"{duration:7.3f} sec: collect elements")
## perform entity linking
start_time = time.time()
tg.perform_entity_linking(
pipe,
debug = debug,
)
duration = round(time.time() - start_time, 3)
print(f"{duration:7.3f} sec: entity linking")
## perform concurrent relation extraction
start_time = time.time()
if concur:
try:
loop = asyncio.get_running_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
inferred_edges: list = loop.run_until_complete(
tg.infer_relations_async(
pipe,
debug = debug,
)
)
else:
inferred_edges = tg.infer_relations(
pipe,
debug = debug,
)
duration = round(time.time() - start_time, 3)
print(f"{duration:7.3f} sec: relation extraction")
n_list: list = list(tg.nodes.values())
df_rel: pd.DataFrame = pd.DataFrame.from_dict([
{
"src": n_list[edge.src_node].text,
"dst": n_list[edge.dst_node].text,
"rel": pipe.kg.normalize_prefix(edge.rel),
"weight": edge.prob,
}
for edge in inferred_edges
])
ic(df_rel)
## construct the _lemma graph_
start_time = time.time()
tg.construct_lemma_graph(
debug = debug,
)
duration = round(time.time() - start_time, 3)
print(f"{duration:7.3f} sec: construct graph")
## rank the extracted phrases
start_time = time.time()
tg.calc_phrase_ranks(
pr_alpha = textgraphs.PAGERANK_ALPHA,
debug = debug,
)
duration = round(time.time() - start_time, 3)
print(f"{duration:7.3f} sec: rank phrases")
## show the extracted phrase results
ic(tg.get_phrases_as_df())
if debug: # pylint: disable=W0101
for key, node in tg.nodes.items():
print(key, node)
for key, edge in tg.edges.items():
print(key, edge)
except Exception as ex: # pylint: disable=W0718
ic(ex)
traceback.print_exc()
## transform graph data to a _graph of relations_
start_time = time.time()
gor: textgraphs.GraphOfRelations = textgraphs.GraphOfRelations(
tg,
)
gor.seeds(
debug = False, # True
)
gor.construct_gor(
debug = False, # True
)
_scores: typing.Dict[ tuple, float ] = gor.get_affinity_scores(
debug = False, # True
)
duration = round(time.time() - start_time, 3)
print(f"{duration:7.3f} sec: graph of relations")
gor.render_gor_plt(_scores)
plt.show()
#sys.exit(0)
######################################################################
## stack profiler report
if profile:
profiler.stop()
profiler.print()
## output lemma graph as JSON
with open("lemma.json", "w", encoding = "utf-8") as fp:
fp.write(tg.dump_lemma_graph())