-
Notifications
You must be signed in to change notification settings - Fork 3
/
miniprojet_n_classes.py
103 lines (74 loc) · 3.06 KB
/
miniprojet_n_classes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import keras
import numpy as np
from PIL import Image
from traitement_images import traitement_images
#Création du modele
vgg16_features = keras.applications.vgg16.VGG16(include_top=False, weights='imagenet')
vgg16_features.save("vgg16Q2_2_et_3.h5")
vgg16_features = keras.models.load_model("vgg16Q2_2_et_3.h5")
vgg16_features.trainable = True
from keras.layers import Input, Dense, Flatten, Model, Dropout
inputs = Input(shape=(224,224,3))
out_vggfeatures = vgg16_features(inputs)
couche_aplatissement = Flatten()(out_vggfeatures)
couche_dense = Dense(512, activation='relu')(couche_aplatissement)
couche_dropout = Dropout(0.25)(couche_dense)
couche_dense2 = Dense(512, activation='relu')(couche_dropout)
couche_dropout2 = Dropout(0.25)(couche_dense2)
predictions = Dense(3, activation='softmax')(couche_dropout2)
model = Model(inputs=inputs, outputs = predictions)
model.summary()
model.compile(optimizer=keras.optimizers.SGD(lr=1e-4, momentum=0.9), loss='categorical_crossentropy', metrics = ['accuracy'])
import multiprocessing
cpu = 8 # Put the correct amount
manager = multiprocessing.Manager()
x_train = manager.list()
y_train = manager.list()
x_test = manager.list()
y_test = manager.list()
def creation_jeux(i):
nom_fichier = '../donnees/generated/BMW/bmw' + str(i) + '.jpg'
nom_fichier2 = '../donnees/generated/Mercedes/mercedes' + str(i) + '.jpg'
nom_fichier3 = '../donnees/generated/Audi/audi' + str(i) + '.jpg'
if (i < 3200):
x_train.append(traitement_images(nom_fichier)[0])
y_train.append([1,0,0])
x_train.append(traitement_images(nom_fichier2)[0])
y_train.append([0,1,0])
x_train.append(traitement_images(nom_fichier3)[0])
y_train.append([0,0,1])
else:
x_test.append(traitement_images(nom_fichier)[0])
y_test.append([1,0,0])
x_test.append(traitement_images(nom_fichier2)[0])
y_test.append([0,1,0])
x_test.append(traitement_images(nom_fichier3)[0])
y_test.append([0,0,1])
print('bmw' + str(i+1) + '/4000')
print('mercedes' + str(i+1) + '/4000')
print('audi' + str(i+1) + '/4000')
pool = multiprocessing.Pool(processes=cpu)
[pool.apply_async(creation_jeux, args=(i, )) for i in range(4000)]
pool.close()
pool.join()
np.save('x_train', np.asarray(x_train))
np.save('y_train', np.asarray(y_train))
np.save('x_test', np.asarray(x_test))
np.save('y_test', np.asarray(y_test))
x_train = np.load('x_train.npy')
y_train = np.load('y_train.npy')
x_test = np.load('x_test.npy')
y_test = np.load('y_test.npy')
epochs = 25
history = model.fit(x_train, y_train, batch_size = 16, epochs = epochs, verbose = 1, validation_data =(x_test, y_test))
model.save("miniprojet_n_classes.h5")
#Traçage des courbes
import matplotlib.pyplot as plt
xvals = range (epochs)
plt.clf() #Clear figure
#Plot both training and validation accuracy on the same figure
plt.plot(xvals, history.history["accuracy"], label = "Training accuracy")
plt.plot(xvals, history.history["val_accuracy"], label = "Validation accuracy")
plt.legend() #Display legend
plt.show() #Show the figure
print('END')